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Prototype-based Domain Description for
One-Class Classification

Fabrizio Angiulli

Abstract—This work introduces the Prototype-based Domain Description rule (PDD) one-class classifier. PDD is a nearest neighbor
based classifier, since it accepts objects on the basis of their nearest neighbor distances in a reference set of objects, also called
prototypes. For a suitable choice of the prototype set, the PDD classifier is equivalent to an other nearest neighbor based one-class
classifier, namely the NNDD classifier. Moreover, it generalizes statistical tests for outlier detection. The concept of PDD consistent
subset is introduced, which exploits only a selected subset of the training set. It is shown that computing a minimum size PDD
consistent subset is in general not approximable within any constant factor. A logarithmic approximation factor algorithm, called the
CPDD algorithm, for computing a minimum size PDD consistent subset is then introduced. In order to efficiently manage very large data
sets, a variant of the basic rule, called Fast CPDD, is also presented. Experimental results show that the CPDD rule sensibly improves
over the CNNDD classifier, namely the condensed variant of NNDD, in terms of size of the subset while guaranteeing a comparable
classification quality, that it is competitive over other one-class classification methods and is suitable to classify large data sets.

Index Terms—One-class classification, novelty detection, nearest neighbor classification, data set condensation.
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1 INTRODUCTION
When only data coming from a single class is available
and the goal is to discriminate the objects belonging to that
class from the other ones, data domain description classifica-
tion techniques, also called one-class classifiers, are needed.
Specifically, the task dealt with in one-class classification is
the following: given a data set of objects, also called training
set or reference set, belonging to a certain object space,
determine a description of the data, that is a rule partitioning
the object space into an accepting region (containing the
objects belonging to the class represented by the training
set) and a rejecting region, (containing all the other objects).
One-class classification is also related to outlier or novelty
detection, as the description of the data can be used to
detect the objects deviating significantly from the training data.
Indeed, domain description can be also regarded as a semi-
supervised technique for outlier detection, in that it takes in
input examples of normality in order to build its model, while
no examples of abnormality are taken into account.

Several approaches to one-class classification have been
presented in the literature [2], and some of them are briefly
recalled next. One-class classification techniques based on
Support Vector Machines (SVM) extend the SVM algorithm
to the case of unlabelled data [3], [4], [5], [6]. The one-class
SVM algorithm is a specialization, working in the presence of
only positive data, of the standard two-class SVM algorithm,
which, conversely, requires both positive and negative exam-
ples. Basically, the feature space is transformed via a kernel
and then the origin of the transformed space is treated as the
only member of the negative class. Thereafter, the standard
two-class SVM algorithm is employed. The one-class SVM
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exploits the parameter ν ∈ (0, 1] in order to control the trade-
off between the number of training-set examples accepted and
the size of the support vector regularization term. The k-
center method covers the data set with k balls with equal radii
[7]. Ball centers are placed on training objects such that the
maximum of all minimum distances between training objects
and the centers is minimized. The nearest neighbor one-class
classification method NN-d [8] accepts a test object p provided
that the distance to its nearest neighbor q in the training set is
less or equal than the distance from q to the nearest neighbor
of q in the training set. This measure is comparable with the
Local Outlier Factor [9] used to detect outliers.

Recently the Nearest Neighbor Domain Description rule
(NNDD, for short) has been introduced [10], which is a one-
class classifier accepting test objects whose nearest neighbor
distances in a reference data set, assumed to model normal
behavior, lie within a certain threshold. In particular, given a
reference set and two parameters k and θ, the NNDD rule
associates a feature vector δ(x) ∈ Rk with each object x.
The vector δ(x) is composed of the distances separating x
from its first k nearest neighbors in the reference set. The
classifier then accepts x if and only if δ(x) belongs to the
hyper-sphere (according to one of the Lr Minkowski metrics,
r ∈ {1, 2, . . . ,∞}) centered in the origin of Rk and having
radius θ, that is if and only if ‖δ(x)‖r ≤ θ. The NNDD
has some interesting properties, since its decision function
encompasses different definitions of distance-based outlier
[11], which, in their turn, under the infinity Minkowski metrics
have been proved to generalize several statistical tests for
outlier detection [12].

In this work a novel nearest neighbor based one-class clas-
sifier, called the Prototype-based Nearest Neighbor classifier
(PDD, for short), is introduced. A prototype set is a set of
objects xi, also called prototypes, each of which is associated
with a radius R(xi): Given parameter θ, a generic object y
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of the space is accepted by the PDD rule provided that y
lies within distance θ − R(xi) from some prototype xi, or,
equivalently, if d(xi, y)+R(xi) ≤ θ. The contributions of the
work are summarized in the following:

• The PDD one-class classifier is introduced. It is shown
that the PDD classifier is in some sense equivalent to the
NNDD one under the infinity Minkowski metric and also
related to statistical definitions for outlier detection, for
a suitable choice of the prototype set;

• The concept of PDD consistent subset is introduced, that
is a subset of the original prototype set which is, loosely
speaking, equivalent to the original prototype set. It is
shown that computing a minimum size PDD consistent
subset is a difficult task, since in general the problem is
not approximable within any constant factor;

• A logarithmic approximation factor algorithm, called
CPDD, for computing a minimum size PDD consistent
subset is then introduced. The CPDD algorithm has some
parameters which allows to tune the trade off between
accuracy and size of the model. Also, the Fast CPDD
algorithm is provided, which is designed to efficiently
compute a PDD consistent subset when very large data
sets are taken into account;

• Experimental results show that the CPDD rule sensibly
improves over the CNNDD classifier in terms of size of
the subset while guaranteeing a comparable classification
quality, that the CPDD is competitive over other one-class
classification techniques, and that Fast CPDD computes
a consistent subset of comparable size and accuracy,
but at a reduced computational cost, and is effective in
classifying large data sets.

The rest of the work is organized as follows. Section 2 defines
the Prototype-based Domain Description rule (PDD) and the
concept of PDD consistent subset, and points out relationships
with the CNNDD rule and with statistical definitions for
outliers. Section 3 investigates the computational complexity
of the problem of computing a minimum size PDD consistent
subset. Section 4 introduces the CPDD rule and its properties.
Subsequent Section 5 describes the Fast CPDD algorithm,
analyzing its expected behavior on some distributions. Section
6 presents experimental results, including the sensitivity anal-
ysis of CPDD, comparison with CNNDD and other one-class
classifiers, and performances of Fast CPDD. Finally, Section
7 presents conclusions of the work.

2 THE PROTOTYPE-BASED DOMAIN
DESCRIPTION
This section introduces the Prototype-based Domain Descrip-
tion rule and states its main properties.

In the following, U denotes a set of objects, d a distance
metrics on U , D a set of objects from U , k a positive integer
number, θ a positive real number, and r ∈ {1, 2, . . . ,∞} a
Minkowski metric Lr.

A prototype set P is a set of pairs

P = {〈x1, r1〉, 〈x2, r2〉, . . . , 〈xn, rn〉},

where each xi (1 ≤ i ≤ n) is an object of U , also called
prototype, and each ri is a real number, also called prototype
radius. Given a prototype xi, the prototype radius ri associated
with xi is also denoted by R(xi).

Intuitively, a prototype set defines a set of hyper-spherical
regions, each of which is centered in xi and has radius ri. Next
the Prototype-based Domain Description one-class classifier is
defined.

Definition 2.1: Given a prototype set P , the Prototype-
based Domain Description rule according to P , d, and θ, is
the function PDDP,d,θ (PDD, for short) from U to {−1,+1}
such that

PDD(y) =

{
+1, ∃x ∈ P : d(x, y) +R(x) ≤ θ
−1, otherwise

The PDD rule accepts the input object y (that is, it returns
the value +1) if y lies within distance θ − R(xi) from some
prototype xi. Otherwise, the PDD rule rejects the input object
y (that is, it returns the value −1). Thus, the PDD rule accepts
an object y if and only if the hyper-sphere centered in y and
having radius θ contains at least one of the hyper-spheres
associated with the prototypes in the set P .

2.1 Relationship with the NNDD rule

Next the definition of another one-class classifier, namely the
NNDD rule, is recalled, and then the relationship between
these two rules is pointed out.

First, the definitions of k-th nearest neighbor and of nearest
neighbor distances vector are provided.

Given an object x of U , the k-th nearest neighbor
nnD,d,k(x) of x in D according to d (nnk(x), for short) is
the object y of D such that there exists exactly k − 1 objects
z of D with d(x, z) ≤ d(x, y). If x is a member of D, then
it is its first nearest neighbor, that is nn1(x) = x.

The k nearest neighbors distances vector δD,d,k(x) of x in
D (δk(x), for short) is

δk(x) = (d(x, nn1(x)), . . . ,d(x, nnk(x))),

that is the vector consisting of the distances separating x from
its first k nearest neighbors in D.

Definition 2.2 ([10]): The Nearest Neighbor Domain De-
scription rule according to D, d, k, θ, and r, is the function
NNDDD,d,k,θ,r (NNDD, for short) from U to {−1,+1} such
that

NNDD(y) = sign(θ − ‖δ(y)‖r),

where sign(z) = −1 if z < 0, and sign(z) = 1 otherwise.
Intuitively, the NNDD rule accepts an input object y if and

only if the norm of the associated nearest neighbor distances
vector is not greater than the threshold θ. In particular, for
r = 1, the rule requires that the sum of the distances separating
y from its first k nearest neighbors in the reference set is not
greater than θ, while for r = ∞, the object y is accepted
provided that the distance from y to its k-th nearest neighbor
is not greater than θ.1

1. Recall that ‖(y1, . . . , yd)‖1 = |y1| + . . . + |yd| and, moreover, that
‖(y1, . . . , yd)‖ = max{|y1|, . . . , |yd|}.
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The following definition relates the PDD rule and the
NNDD rule.

Definition 2.3: Given a set of objects D, the prototype set
P (D, d, k, θ) associated with D with respect to d, k, and θ is

{〈x,d(x, nnk(x))〉 | x ∈ D and d(x, nnk(x)) ≤ θ}.

That is, the prototype set P (D, d, k, θ) consists of all the
pairs 〈xi, ri〉, with xi belonging to D, such that the distance
ri separating xi from its k-th nearest neighbor in D is not
greater than θ.

Relationship between the two rules is clarified by subse-
quent Theorem 2.4, stating that if the reference set of the
PDD rule is set to P (D, d, k, θ) then on the objects x of the
reference set D the output of the PDD rule is identical to the
output of the NNDD rule for r = ∞.

Theorem 2.4: Given a set of objects D, a distance function
d, and parameters k and θ, it holds that

(∀x ∈ D)(NNDDD,d,k,θ,+∞(x) = PDDP (D,d,k,θ),d,θ(x)).

Proof. Let x be a generic object of D. First, consider
the case d(x, nnk(x)) ≤ θ. Then NNDD(x) = sign(θ −
‖δk(p)‖+∞) = sign(θ − d(x, nnk(x))) = +1. Further-
more, the pair 〈x,d(x, nnk(x))〉 belongs to P (D, d, k, θ)
and, hence, d(x, x) + R(x) = 0 + d(x, nnk(x)) ≤ θ and
PDDP (D,d,k,θ),d,θ(x) = +1.

Consider now the case d(x, nnk(x)) > θ. In this case
NNDD(x) = −1. By contradiction, assume that there exists a
pair 〈y,R(y))〉 in P (D, d, k, θ) such that d(x, y)+R(y) ≤ θ.
Then, since R(y) is d(y, nnk(y)), within distance ry =
d(x, y)+ d(y, nnk(y)) from x there are at least k+1 objects
of D and, hence, it holds that d(x, nnk(x)) ≤ ry ≤ θ, which
contradicts the hypothesis. 2
Thus, Theorem 2.4 states that from the point of view of
the objects belonging to the data set D, the prototype set
P (D, d, θ, k) is the analogous for the PDD rule of the data
set D for the NNDD rule.

2.2 PDD Consistent Subset
When the reference set D is large, space requirements to store
D and time requirements to find the neighbors of an object in
D increase. In the spirit of the reference set thinning problem
for the k-NN-rule [13], [14], the concept of NNDD reference
consistent subset was defined in [10] and, in the same spirit,
next it is provided the definition of PDD consistent subset.

Definition 2.5: Let P be a prototype set and let S be a
subset of P . The set S is said to be a PDD consistent subset
of P with respect to d and θ, if the following relationship hold

(∀〈x, r〉 ∈ P )(PDDP,d,θ(x) = PDDS,d,θ(x)).

It is of interest here to recall the concept of sample com-
pression scheme. A sample compression scheme is defined by
a fixed rule σ : D 7→ σ(D) for constructing a classifier from
a given set of data. Given a training set D, it is compressed
by finding the smallest subset (the compression set) S ⊆ D
for which the classifier σ(S) correctly classifies the whole set
D. It is known that the size of a sample compression scheme
can be used to bound generalization [15], [16].

It can be concluded from the concept of sample compression
scheme and from the discussion above that replacing the
prototype set P with a consistent subset S of P may improve
both generalization and response time.

Importantly, it also holds that a PDD consistent subset S
of the set P (D, d, θ, k) is the analogous for the PDD rule of
the data set D for the NNDD rule, as accounted for in the
following theorem.

Theorem 2.6: Given a set of objects D and a PDD consis-
tent subset S of P (D, d, k, θ), it holds that

(∀x ∈ D)(NNDDD,d,k,θ,+∞(x) = PDDS,d,θ(x)).

Proof. Let x be a generic object of D. If d(x, nnk(x)) ≤
θ, then 〈x,d(x, nnk(x))〉 ∈ P (D, k, θ) and, hence,
PDDS,d,θ(x) = PDDP (D,k,θ),d,θ(x) = NNDD(x), by the
definition of PDD consistent subset.

If d(x, nnk(x)) > θ, then it holds that NNDD(x) =
PDDP (D,k,θ),d,θ(x) = +1, and there not exists a pair
〈y,R(y)〉 in P (D, k, θ) such that d(x, y) + R(y) ≤ θ. The
result then follows since S is a subset of P (D, k, θ). 2

Thus, in order to build an efficient and effective one-class
classifier, the task of interest here is to provide an algorithm for
computing an as small as possible PDD consistent subset of
the prototype set P (D, d, k, θ), to be employed as a prototype
set of the PDD classifier for discriminating the objects of the
class associated with the data set D from the other ones. Due
to the way the PDD classifier builds its decision boundary,
its consistent subset is expected to be much smaller than the
consistent subset associated with the CNNDD rule. Moreover,
due to its relationship to the CNNDD rule and to statistical
definitions for outliers (see next section), the PDD classifier is
also expected to be very effective as far as the classification
accuracy is concerned.

2.3 Relationship with statistical definitions
A characterizing point of the PDD rule is that it is related
also with unsupervised methods for outlier detection, that are
techniques for identifying the most deviating objects in an
input data set. In particular, it has relationships with distance-
based outlier detection methods, that were introduced in [11]:
a point in a data set is a DB(c, d)-outlier with respect to
parameters c and d, if at least fraction c of the points in the
data set lies greater than distance d from it.

It can be shown that for a suitable choice of the parameters
k and θ and of the prototype set, the PDD rule rejects the
distance-based outliers in the data set. Indeed, let k set to (1−
c)|D|, let θ set to the distance value d, and let the prototype
set P set to P (D, d, k, θ). The result follows by Theorem 2.4,
after noticing that the distance-based definition coincides with
the decision rule of the NNDD classifier under the infinity
Minkowski metrics.

An interesting property of definition [11] is that it gen-
eralizes several discordancy tests to detect outliers given in
statistics, other than being is suitable when the data set does
not fit any standard distribution. In particular, given a statistical
definition Def for outliers, it is said that the distance-based
definition unifies the definition Def , provided that there exist
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specific values c0 and d0 for the parameters c and d such that
an object is an outlier for Def if and only if it is a DB(c0, d0)-
outlier. This means that, given a data set complying with a
certain data distribution for which there exists a test unifiable
with the distance-based outlier definition, a suitable PDD
classifier can be built which is able to reject the objects that are
less probable to occur according to the distribution underlying
the data. For example, consider a data set D which is normally
distributed: it follows from [11] that the PDD classifier rejects
the objects lying three standard deviations σ further the mean
µ, that is the objects x such that

∣∣x−µ
σ

∣∣ ≥ 3, provided that
k is set to k0 = 0.0012|D|, θ is set to θ0 = 0.13σ, and the
prototype set is P (D, d, k0, θ0).

For details on the concept of unification above recalled and
on the relationship between statistical tests and distance-based
outliers, the reader is referred to [11], [17].

3 COMPUTATIONAL ANALYSIS
In this section the computational complexity of the problem
of computing a minimum size PDD consistent subset is
investigated. The reader is referred to [18] for basics on com-
plexity theory, NP optimization problems, and approximation
algorithms. Next it is shown that, in the general case, the
problem of computing a minimum size PDD consistent subset
is not in the APX complexity class, that is, loosely speaking,
the class of the NP optimization problems whose optimal
solution can be approximated in polynomial time within a
fixed factor. Before providing the result, the PDD Consistent
Subset Problem is introduced and then its evaluation and
decision versions are defined.

Given a prototype set P , a distance metrics d, and a positive
real number θ, the PDD Consistent Subset Problem 〈P, d, θ〉
is defined as follows: compute a PDD consistent subset S∗

of P with respect to d and θ, also said a minimum size PDD
consistent subset, such that, for each PDD consistent subset
S of P with respect to d and θ, it holds that |S∗| ≤ |S|.

The evaluation version 〈P, d, θ〉E of the problem 〈P, d, θ〉
is defined as follows: compute the size m∗ of the minimum
size PDD consistent subset of P with respect to d and θ.

Given a positive integer m, the decision version
〈P,d, θ,m〉D of the problem 〈P,d, θ〉 is defined as follows:
reply “yes” if there exists a PDD consistent subset S of P
with respect to d and θ such that |S| ≤ m, and reply “no”
otherwise.

Theorem 3.1: The 〈P, d, θ〉 problem (1) is NP-hard, and (2)
is not in APX.
Proof. (Point 1) (Membership) Given a subset S of P , having
size |S| ≤ m, it can be checked in polynomial time that, for
each x ∈ P , PDDP,d,θ(x) = PDDS,d,θ(x).

(Hardness) The proof is by reduction from the Dominating
Set Problem [18]. Let G = (V,E) be an undirected graph,
and let m ≤ |V | be a positive integer. The Dominating Set
Problem is: is there a subset U ⊆ V , called dominating set of
G, with |U | ≤ m, such that for all v ∈ (V − U) there exists
u ∈ U with {u, v} ∈ E?

Let G = (V,E) be an undirected graph. Define the metric
dV on the set V of nodes of G as follows: dV (u, v) = θ, if

Algorithm CPDD

1) for each object xi in D, determine the distance ri
between xi and its k-th nearest neighbor in D

2) set P to {xi ∈ D | ri ≤ θ}
3) for each object xi in P , determine the set Ni composed

of the objects y of D such that d(xi, y) + ri ≤ %θ
4) set S and C to the empty set
5) while |C| ≤ η|P | do

a) determine the object xj of P such that (break ties
in favor of the object such that the value rj is
minimum)

|Nj − C| = max{|Ni − C| : xi ∈ P}
b) set S to S ∪ {〈xj , rj〉}, and C to C ∪Nj

6) return the set S

Fig. 1. The CPDD algorithm.

{u, v} ∈ E, and dV (u, v) = 2θ, otherwise. Let PV be the set
{〈v, 0〉 | v ∈ V }. Next it is proved that G has a dominating set
of size m if and only if 〈PV ,dV , θ,m〉D is a “yes” instance.

(⇒) Suppose that G has a dominating set U such that |U | ≤
m. Then SU = {〈u, 0〉 | u ∈ U} is a PDD consistent subset of
PV with respect to dV and θ. Indeed, let v a generic object of
V . If v ∈ U , then 〈v, 0〉 ∈ PV and d(v, v)+R(v) = 0+0 ≤ θ.
Otherwise, v 6∈ U and there exists u ∈ V such that {u, v} ∈
E; hence, 〈u, 0〉 ∈ SU and d(v, u) +R(u) = θ + 0 ≤ θ.

(⇐) Suppose that there is a reference consistent subset SU

of PV such that |SU | ≤ m. Then U = {u | 〈u, 0〉 ∈ SU}
is a dominating set of G. By contradiction, assume that there
is v ∈ (V − U) such that, for each u ∈ U , {v, u} 6∈ E.
Then, there exists v ∈ PV such that, for each 〈u, 0〉 ∈ SU ,
d(v, u)+R(u) = 2θ+0 > θ, and SU is not a PDD consistent
subset of PV . It follows immediately that U is a dominating
set for G.

The NP-hardness of the 〈P,d, θ〉 problem follows immedi-
ately from the NP-completeness of its decision version.
(Point 2) It is known that the Minimum Dominating Set
Problem, that is the problem of determining the size of the
smallest dominating set of a graph, is not in APX [19].

Next we informally recall the concept of AP-reduction (the
reader is referred to [18] for the formal definition). In the
context of approximation algorithms, a reduction from a prob-
lem A to a problem B should guarantee that an approximate
solution of B can be used to obtain an approximate solution
for A. Thus, it is needed a function fA mapping instances
of A into instances of B and also a function fB mapping
back solutions of B into solutions of A. In order to preserve
guaranteed approximation, the reduction has to satisfy the
following property: for any instance x of A, if the performance
ratio of the solution y of the instance fA(x) of B is at
most r, then the performance ratio of the solution fB(x, y)
is at most r′, where r′ depends only on r. An AP-reduction
has the property of establishing a linear relation between the
performance ratios r and r′, thus preserving membership in
all approximation classes.

We note that Point 1 of this theorem defines an AP-reduction
from the Minimum Dominating Set Problem to the Minimum
PDD Consistent Subset Problem. Indeed, the elements of the
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(a) θ = 0.2, % = 1.00, η = 1.00 (b) θ = 0.2, % = 0.75, η = 1.00 (c) θ = 0.2, % = 0.75, η = 0.99

(d) θ = 0.1, % = 1.00, η = 1.00 (e) θ = 0.1, % = 0.75, η = 1.00 (f) θ = 0.1, % = 0.75, η = 0.99

Fig. 2. Examples of PDD consistent subsets computed by the CPDD algorithm.

sets U and SU there defined are in one-to-one correspondence
and, hence, the size of these two sets is always identical, that
is |U | = |SU |. As an immediate consequence of this reduction,
the latter problem does not belong to APX. 2
4 THE CPDD ALGORITHM
Figure 1 shows the algorithm CPDD. Given a data set D, the
CPDD algorithm computes a PDD consistent subset of the
prototype set P (D, d, k, θ) associated with D.

The algorithm receives in input a data set D, parameters k a
θ, and the additional parameters %, η ∈ (0, 1], whose semantics
is discussed in the following (if not otherwise specified, it is
assumed that % and η are both set to 1).

Initially, for each object xi of D, the algorithm determines
the distance ri to its k-th nearest neighbor (step 1). The set
P , built in step 2, is composed of the objects occurring in
the prototype set P (D, d, k, θ), that are the objects xi such
that ri ≤ θ. Hence, for each object xi in P , the set Ni of the
objects of D lying within distance θ−ri from it is determined
(step 3). Then the algorithm computes the consistent subset S
following a greedy strategy (step 5). The set C consists of the
objects of P which are accepted by using the current subset S.
At each step, the object xj maximizing the number of objects
in Nj − C is selected and inserted in S, until C contains at
least the fraction η of the objects in P (until C covers P , if
η = 1).

Next theorem shows that the the size of the solution returned
by the algorithm has an approximation factor.

Theorem 4.1: The CPDD algorithm provides a solution
having a 1 + ln(n) approximation factor.
Proof. Assume that the parameter % is set to one. We note
that the set Ni precisely consists of all the prototypes in
P (D, d, θ, k) which are correctly recognized through the PDD
rule if xi is included in the PDD consistent subset S.

Given a finite set S and a collection C of subsets of S, a set
cover for S is a subset C′ of C such that every element in S
belongs to at least one member of C′. It is clear that the PDD
consistent subsets of P are in one-to-one correspondence with
the set covers of {Ni | xi ∈ P}. The result hence follows by
noting that step 5 of the algorithm CPDD is analogous to the
greedy algorithm for the Minimum Set Cover Problem, the
problem of computing a set cover of minimum size, which
achieves an approximation factor of 1+ ln(n), where n is the
size of the set to be covered. 2
Note that steps 4-6 compute a PDD consistent subset of any
arbitrary prototype set.

Figure 2 reports some examples of PDD consistent subsets
computed by the CPDD algorithm. The data set (blue points) is
composed of ten thousands points in the plane. The parameter
k has been set to 5, while two distinct values for the parameters
θ, % and η have been considered, namely 0.1 and 0.2 for θ,
0.75 and 1.0 for %, and 0.99 and 1.0 for η.

Stars (in red color) denote the prototypes belonging to the
PDD consistent subset S, while the (black) curve denotes the
decision boundary of the classifier PDDS,d,θ. The relative size
of the PDD consistent subset is (a) 0.7% (70 prototypes) for
θ = 0.2, % = 1, and η = 1, (b) 1.3% (128 prototypes) for
θ = 0.2, % = 0.75, and η = 1, (c) 0.6% (62 prototypes) for
θ = 0.2, % = 0.75, and η = 0.99, (d) 2.3% (227 prototypes)
for θ = 0.1, % = 1, and η = 1, (e) 4.4% (439 prototypes) for
θ = 0.1, % = 0.75, and η = 1, and (f) 3.4% (337 prototypes)
for θ = 0.1, % = 0.75, and η = 0.99.

From these figures it is clear that the smaller the value of
the parameter θ, the closer to the data set shape the class
boundary, the greater the number of data set objects rejected
by the PDD rule, and the greater the number of prototypes
belonging to the consistent subset. Moreover, the smaller the
value of the parameter %, the greater the number of prototypes
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Algorithm Fast CPDD

1) set S, C, and E to the empty set, set D′ to D, set
count∗ to 0, count to k + 1, and σ to 1

2) while count > (1− η)k do
a) draw a random sample T from D′ of size m =

((1− a)σ + a)s (a = 0.1)
b) for each object xi in T , determine the distance ri

between xi and its k-th nearest neighbor in D
c) set P to {xi ∈ T | ri ≤ θ}
d) for each object xi in P , determine the set Ni com-

posed of the objects y of D such that d(xi, y) +
ri ≤ %θ

e) set E to E ∪ P
f) do

i) determine the object xj of E such that (break
ties in favor of the object such that the value
rj is minimum)

|Nj − C| = max{|Ni − C| : xi ∈ E}
ii) set count to |Nj − C| and count∗ to

max{count∗, count}
iii) if count > (1 − η)k then set S to S ∪

{〈xj , rj〉} and C to C ∪Nj

while xj 6∈ P and count > (1− η)k
g) set D′ to D′ − (T ∪ C), and σ to log(count)

log(count∗)

3) return the set S

Fig. 3. The Fast CPDD algorithm.

belonging to the consistent subset, the more accurate the form
of the decision boundary, and the smaller the probability of
rejecting objects belonging to the class represented by the data
set. For example, in Figure 2(a) (% = 1) there is a “hole”,
approximately centered in (−0.78,−0.78), in the lower tail of
the data set (but also other smaller “holes” exist along the data
set shape), while these regions are covered by the prototypes
in Figure 2(a) (% = 0.75). Finally, the smaller the value of the
parameter η, the smaller the number of prototypes belonging
to the consistent subset, but the greater the probability of
rejecting objects belonging to the class represented by the
data set, since the most sparse regions of the feature space
belonging to the class are left uncovered.

5 THE FAST CPDD ALGORITHM
The temporal cost of the CPDD algorithm is quadratic in
the number of objects in the data set D, due to the need of
computing all the pairwise data set object distances. Thus,
when D is very large the associated computational effort may
become heavy. To reduce this cost, it is here presented a variant
of the basic algorithm, called Fast CPDD (or FCPDD, for
short).

Figure 3 reports the algorithm Fast CPDD. The algorithm
receives in input the parameters D, k, θ, %, and η, already
introduced, plus the novel parameter s, representing the size
of a random sample of the data set. The semantics of the
parameters % and η has been already discussed. In particular,
the parameter η is employed to reject the less probable objects
of the data set. However, in the Fast CPDD algorithm this is
accomplished by adopting a policy different from that of the
CPDD algorithm, policy which is detailed next.

Let xj be the object selected for insertion in the consistent
subset S, and let count denote the number |Nj−C|, where Nj

is the set of the data set objects y such that d(xj , y)+rj ≤ %θ,
with rj the distance from xj to its k-th nearest neighbor in
D. Then, xj is inserted in S if the condition count > (1 −
η)k holds (see step 2.f.iii of the algorithm). This condition is
also employed as stopping criterion of the algorithm, since the
algorithm terminates if count ≤ (1− η)k (see step 2).

Thus, the consistent subset S contains only objects whose
inclusion in S contributes to augment the size of the set C,
which is the set containing the data set object accepted by
using S as reference set of the classifier, of at least (1− η)k.
Note that if η equals one (the default setting), all the data set
objects accepted by the PDD rule are included in the set S,
as it is the case also for the CPDD algorithm.

In order to alleviate the quadratic temporal cost involved in
the computation of all the pairwise data set object distances,
at each iteration (step 2) the algorithm Fast CPDD randomly
selects a set T of data set objects among those in the set D′

(step 2.a). The objects in D′ are those not already selected
in previous iterations which are not accepted by using the
current consistent subset S (see step 2.g, where D′ is updated
to D′ − (T ∪ C)).

For each object xi in the random sample T , the distance
ri to its k-th nearest neighbor in D is determined (step 2.b),
and for each object xi in P (that is such that ri ≤ θ; see step
2.c), the set Ni composed of the objects y of D such that
d(xi, y) + ri ≤ %θ is computed (step 2.d).

The set E accumulates all the candidate prototypes selected
during the various iterations, in that it is set to E∪P (step 2.e).
The next objects to be inserted in S are then selected in the
set E (see the cycle in step 2.f). Specifically, at each iteration
the object xj in E maximizing the number count of objects
in Nj−C is selected for insertion in S (step 2.f.i). As already
explained, the object xj is inserted in S provided that the
condition count > (1− η)k is satisfied. The cycle terminates
if the object xj do not satisfy the condition count > (1− η)k
or if xj comes from the set P , that is the set containing the
last recently selected candidate prototype objects.

The motivation of this policy is the following. It is assumed
that the size s of the random sample guarantees that a good
approximation of the best object in D′ (including the data
set objects not currently accepted and not already selected
for insertion in the previous iterations) to be added to the
set S occurs in the set T and, hence, in the set P . Thus, at
each iteration only the best object coming from P is inserted
in S. As for the objects in the set E − P , that are the
objects belonging to the sets P which were selected in the
previous main iterations of the algorithm, they are inserted
in S provided that they are better than the best object in the
current set P , that is until one object of P is selected for
insertion in S.

The termination condition of the main cycle of the algorithm
(step 2) has been already illustrated. It remains to discuss on
the size m of the random sample T . The parameter s specifies
the maximum size allowed for a random sample T . In detail,
at each iteration, m is set to the value ((1− a)σ+ a)s, where
a (a ∈ (0, 1)) denotes the smallest value allowed for m, that
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is a ·s and σ ∈ [0, 1] represents a reduction factor (a = 0.1 by
default, denoting the ten percent of the value of the parameter
s; however, by setting a to 1, the size m of the random set is
held fixed to s).

The value of σ is initially one, so that during the first
iteration the size m of the random sample T is precisely s, that
is the user-specified value. Let count∗ denote the maximum
value assumed so far by the counter count (see step 2.f.ii).
At the end of each iteration, the reduction factor σ is set to
the value log(count)

log(count∗) (step 2.h). Thus, the larger the relative
increase (with respect to the maximum one) of the set C in
the last iteration, the closer to s the size m of the random
sample to be drawn in the current iteration.

The rationale underlying this policy is that the size of the
returned consistent subset is influenced mostly by the right
selection of the objects in D coming from the most populated
regions of the feature space. Intuitively, the value of σ is re-
lated to relative likelihood for the objects in D−C to represent
an outcome of the distribution of the class represented by the
objects in D. Thus, since m is directly proportional to σ, the
care the algorithm devotes to the selection of the next object
to be inserted in S is directly proportional to the probability
of the data set objects left uncovered by the current set S.

This completes the description of the algorithm. Assume
η is set to 1. In this case, the algorithm terminates when in
the set E and, hence, in the current set P , there are no more
objects accepted by the PDD rule. This means that in the last
iteration the algorithm selected a random sample T composed
only of outliers. Although this does not rigorously imply that
there are no more inliers in D′, it is anyway the case that the
occurrence probability associated with the residual inliers in
D′ is comparable to that of the outliers, and their inclusion
in S does not pay much. Thus, the termination condition
employed, that is count ≤ (1− η)k, is a good replacement of
the exact termination condition D′ = ∅. However, by setting
η = 1 and by substituting the condition in step 2 with the
condition D′ 6= ∅, the following property readily holds.

Theorem 5.1: The Fast CPDD algorithm computes a PDD
consistent subset.

As for the differences of the Fast CPDD algorithm with
respect to the CPDD algorithm, it must be pointed out the
latter algorithm selects the next prototype to be added to the
current set S from the set D− S, while the former one takes
into account only the objects in the set E. Note that the set
P selected at each iteration by the Fast CPDD is a subset of
D′ = D − (E ∪ C) (with C a superset of S), and not of
D − S. This policy is needed by the Fast CPDD in order to
accelerate convergence, since the set C grows more rapidly
than the set S. Moreover, note that the current set E, from
which Fast CPDD selects the next prototypes to be inserted
in S, contains also objects coming from C − S (recall that E
is augmented with P ; see step 2.e).

To conclude, the temporal cost of the algorithm is con-
sidered. Let mi be the size of the random sample T at
the generic iteration of the algorithm, and let M be

∑
i mi.

Since M cannot be greater than |D|, the number of distance
computations of the algorithm FCPDD is M · |D| ≤ |D|2.
Thus, the temporal cost of the algorithm is quadratic, but

in practice the number of distances to be computed could
represent a small fraction of the worst case.

5.1 Analysis of the FCPDD algorithm

Let x∗ be the object in D whose insertion in S will maximize
the increment of the size of C. Moreover, assume the data set
size is very large (potentially infinite), so that the distance
to the k-th nearest neighbor can be approximated with a
very small value (close to zero), and that the data set is
distributed according to a pdf f(x). Then, let p∗ denote
the probability that the Fast CPDD algorithm selects for
insertion in S an object coming from the most populated
sub-region R∗ = Iθ(x

∗) − R(S) of the accepting region
left uncovered by the current set S, where Iθ(x

∗) is the
neighborhood of radius θ of the object x∗ and R(S) denotes
the set {y ∈ U : PDDS(y) = +1}.

Thus, the probability p∗ that the object selected by the Fast
CPDD algorithm comes from the region R∗ is

p∗ = 1− (1− q∗)s,

where q∗ is the probability for an object of the accepting class
to belong to the region R∗, and (1 − q∗)s is the probability
that no object in T belongs to R∗.

At the first iteration, q∗ is such that

q∗ =

∫
R∗

f(v) dv,

while during the generic iteration of the algorithm, q∗ is not
smaller than

q∗ =

(∫
R∗\R(S)

f(v) dv

)
/

(∫
U\R(S)

f(u) du

)
,

since q∗ is the probability that a randomly selected object in
D − C belongs to R∗.

As an example, consider the standard normal distribution
with mean µ = 0. It has been already pointed out that for
R = 0.13 the 3h of the data set objects are rejected. Thus,
let θ = R, then the probability that a generic object comes
from the most probable region [µ−R,µ+R] = [−0.13, 0.13]
of the data set is

q∗ = Φ(0.13)− Φ(−0.13) ≈ 0.1034,

and for s = 100,

p∗ = 1− (1− 0.1034)100 ≈ 0.99998

regardless of the size of the data set.
Let R∗ denote now the region of radius r centered in x∗ (for

r = 0 the region R∗ contains only x∗). At the first iteration
it holds that

p∗ = 1− (1− (Φ(r)− Φ(−r)))s.

Figure 4(a) reports the probability p∗, for various values of
r ≤ θ and sample sizes s. It is clear that the probability of
selecting a close to optimal object rapidly increases with the
sample size s.
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Fig. 4. Analysis of the Fast CPDD algorithm on the normal distribution.

Moreover, let i > 0 denote the generic iteration at which
the region R(S) associated with the set C is

R(S) = [µ− (2i− 1)θ, µ+ (2i− 1)θ].

Then, the probability p∗i of selecting the next prototype in the
optimal region R∗ is upper bounded by

p∗i = 1− (1− q∗i )
s,

where q∗i is

q∗i =
2(Φ(2iθ + r)− Φ(2iθ − r))

1− (Φ((2i− 1)θ)− Φ(−(2i− 1)θ)))
.

Figures 4(b) and (c) report the probability p∗i in correspon-
dence of various values of r for s = 30 and s = 100,
respectively. For s = 30, representing a very small sample,
the probability p∗i is close to 1 for r ≥ θ/2 and above 0.9
for r greater than θ/4. For s = 100, the probability pi is
very high in all cases considered. Moreover, interestingly the
figures show that the probability to select an optimal object
on this distribution even increases with the number iterations
performed.

This analysis confirm that, provided that the employed
random sample size s is sufficiently large, FCPDD is expected
to behave very similarly to CPDD.

6 EXPERIMENTAL RESULTS
In this section, experiments involving the CPDD rule are
presented. First of all, some of measures employed during
experiments are described. The empirical error is the fraction
of data set objects which are rejected by the CPDD classifier.
The True Positive Rate (TPR, for short) is the fraction of
normal objects accepted by the classifier, while the False
Positive Rate (FPR, for short) is the fraction of abnormal
objects accepted by the classifier. Dually, the False Negative
Rate (FNR, for short) is the fraction of normal objects rejected
by the classifier, while the True Negative Rate (TNR, for short)
is the fraction of abnormal objects rejected by the classifier. It
holds that FNR=1-TPR and FPR=1-TNR. The ROC curve is
the plot of the FNR versus the TNR (or, specularly, TPR versus
FPR), and the area under the ROC curve (AUC, for short)
provides a summary to compare two classifiers. In order to
determine the ROC curve, for a fixed value of k the parameter
θ was varied from zero to a suitable large value and, then, the
FNR and the TNR have been measured.

Experiments are organized as follows. Section 6.1 presents
a sensitivity analysis of the CPDD rule. In Section 6.2 the
ROC curves of the CPDD method are examined. Section 6.3
compares CPDD and CNNDD in presence of noise. Sec-
tion 6.4 discusses differences with other SVM-based domain
description algorithms. Finally, Section 6.5 presents results
obtained by using the FCPDD algorithm.

6.1 Sensitivity analysis
In this section a sensitivity analysis of the CPDD rule is
accomplished in order to understand the behavior of the
method. Specifically, the parameter k has been varied in the
range [1, 32] and then the following combinations of values
for % and η have been considered: % = 1 and η = 1, % = 0.9
and η = 1, and % = 1 and η = 0.95. For each combination of
k, %, and η, the AUC has been determined.

In the following, the results obtained on the Image segmen-
tation, Ionosphere, Satellite image, and Isolet data sets [20] are
described. In particular, for the Image segmentation data set
(19 attributes) the path class (330 objects) forms the normal
class, while the remaining 1,980 objects represent anomalies,
for the Ionosphere data set (34 attributes) the good class (225
objects) is the normal one, while the objects of the bad class
are the anomalies, for the Satellite image (36 attributes) the
red soil class (1,533 objects) represent the normal class, while
the remaining 3,902 objects are the anomalous ones, and for
the Isolet data set (617 attributes) the class 1 (240 objects)
represents the normal class, while 240 objects from the other
classes form the anomalies.

Figure 5 shows the results. In all graphics, the abscissa
reports the value of the parameter k. Figures 5(a)-(c) show
the AUC of the CPDD method for the various combinations of
parameters considered, together with the AUC of the CNNDD
method for r = +∞. The AUC of CPDD is inversely
proportional to % (see the curve for % < 1), and directly
proportional to η (see the curve for η < 1). Moreover, the
AUC of CPDD and CNNDD are comparable and the best AUC
value achieved by the two methods is about the same. The
different behavior of the two methods can be better understood
after having examined Figures 5(d)-(f), reporting the size areas
of the methods, that is the area under the curve of the false
negative rate versus the relative size of the CPDD reference
subset, a measure which intends to provide a summary of
the reference set size reduction achieved by the methods.
As far as the CPDD method is concerned, the greater the



9

1 2 4 8 16 32
0.97

0.975

0.98

0.985

0.99

0.995

1
Image segmentation path

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

, A
U

C

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(a)

1 2 4 8 16 32
0.85

0.9

0.95

1
Ionosphere good

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

, A
U

C

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(b)

1 2 4 8 16 32
0.96

0.97

0.98

0.99

1
Satellite image red soil

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

, A
U

C

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(c)

1 2 4 8 16 32
0.96

0.97

0.98

0.99

1
Isolet class 1

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

, A
U

C

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(d)

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1
Image segmentation path

C
on

de
ns

at
io

n 
ra

tio

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(e)

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1
Ionosphere good

C
on

de
ns

at
io

n 
ra

tio

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(f)

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1
Satellite image red soil

C
on

de
ns

at
io

n 
ra

tio

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(g)

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1
Isolet class 1

C
on

de
ns

at
io

n 
ra

tio

Number of neighbors, k

 

 

ρ=1.00, η=1.00
ρ=0.90, η=1.00
ρ=1.00, η=0.95
CNNDD

(h)

Fig. 5. Sensitivity analysis of the CPDD rule.

parameter k, the smaller the size area. On the contrary, the
size noticeably increases with k for the CNNDD method. This
can be explained since CNNDD retains in the reference subset
more objects than CPDD.

Notice that, for k = 1 (% = 1 and η = 1) the decision
boundaries of the CPDD and CNNDD classifiers tend to
coincide (since in this case it holds that R(x) = 0 for x in D),
and this accounts for the close behavior of the two methods
when k = 1. However, while the size of the CPDD consistent
subset is inversely proportional to the value of the parameter
k, exactly the opposite holds for the size of the CNNDD
consistent subset. To better understand this point, consider
Figure 6 showing how the FNR and TNR of CPDD and
CNNDD vary with k on the Ionosphere and Satellite image
data sets (k ∈ {1, 2, 4, 8}). As far as the CNNDD method is
concerned, the curves highlight that when k increases, the FNR
and TNR curves move towards the right side of the graphic,
which means that in order to achieve the same combination
of FNR and TNR values a larger and larger subset has to
be employed. Differently, the same combination of FNR and
TNR values can be achieved with a subset having the same
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Fig. 6. FNR, TNR and subset size versus k.

size or even smaller, when the CPDD method is considered.
It can be concluded that in order to achieve small ratios

|S|/|D| the CNNDD rule has to be employed with little
values of k, while the same constraint does not hold for the
CPDD rule. This property represents a limitation in different
scenarios, as discussed in the following.

6.2 ROC curves

While in previous section the behavior of CPDD has been
illustrated through the use of the AUC, here the ROC curves
are considered. To obtain these curves, k as been set to 4
and θ has been varied from zero to a suitable large value.
ROC curves are reported in Figure 7, which includes also the
corresponding curves of the CNNDD method for comparison
purposes (notice that, according to the analysis accomplished
in the previous section, k = 4 is one of the best settings for
CNNDD).

Figures 7(a)-(c) show the ROC curves of the CPDD (solid
lines) and CNNDD (dash-dotted lines) methods and also the
relative size |S|/|D| of the corresponding consistent subsets S
achieving the same value of FNR. From these curves it is clear
that the the CPDD consistent subset (dashed lines) is much
smaller than the corresponding CNNDD subset (dotted lines)
guaranteeing the same FNR. Moreover, as already noticed, the
AUCs of the two methods are very similar.

Figures 7(d)-(f) report the TNR (solid lines) ad FNR (dashed
lines) of the CPDD method and the TNR (dash-dotted lines)
and FNR (dotted lines) of the CNNDD method, as a function
of the relative subset size |S|/|D|. For the CPDD method the
pair of parameters % = 1, η = 0.95 (upper curve), % = 1, η = 1
(middle curve), and % = 0.9, η = 1 (lower curve) have been
considered. For the Isolet data set, the parameters η = 0.90
and % = 0.95 have been employed in the upper and lower
curve, respectively, due to the high dimensionality of the data.
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Fig. 7. Comparison between the CPDD and the CNNDD rule.

As far as the middle curves of the CPDD (% = 1, η = 1) and
the curves of the CNNDD is concerned, it can be noted that
for the same value of FNR or TNR the subset of the CPDD
is sensibly smaller than that of the CNNDD. As notable
examples (highlighted by means of big points on the curves)
compare (1) the CPDD subset of relative size 0.064, achieving
FNR=0.031 and TNR=0.869, with the CNNDD subset of
relative size 0.277, achieving FNR=0.045 and TNR=0.862,
for the Ionosphere data set, (2) the CPDD subset of relative
size 0.054, achieving FNR=0.024 and TNR=0.997, with the
CNNDD subset of relative size 0.158, achieving FNR=0.027
and TNR=0.983, for the Image segmentation data set, (3) the
CPDD subset of relative size 0.042, achieving FNR=0.041
and TNR=0.952, with the CNNDD subset of relative size
0.106, achieving FNR=0.027 and TNR=0.943, for the Satel-
lite image data set, and (4) the CPDD subset of relative
size 0.023, achieving FNR=0.079 and TNR=0.909, with the
CNNDD subset of relative size 0.097, achieving FNR=0.012
and TNR=0.902, for the Isolet data set.

As far as the upper curves of the CPDD is concerned (% =
1, η < 1), it can be noted that by decreasing the value of
the parameter η, very high values of TNR are obtained in
correspondence of very small subsets, but the associated FNR
worsens with respect to the case η = 1. This can be explained
since the smaller the parameter η, the greater the portion of the
accepting region of the PDD rule which is leaved uncovered
by the CPDD consistent subset. Conversely, as far as the lower
curves of the CPDD is concerned (% < 1, η = 1), it can be
noted that by decreasing the value of the parameter %, the FNR
improves while the TNR gets worse. This can be explained
since the smaller the parameter %, the greater, and also the

closer to each other, the number of prototypes composing the
CPDD consistent subset.

Hence, by properly setting the parameters % and η the user
can tune the trade off between FNR and TNR and, simultane-
ously, between subset size and accuracy. The following table
summarizes the AUCs of the CPDD for various combinations
of the parameters % and η, and k = 4.

Data set % 1.00 0.90 1.00 0.90
η 1.00 1.00 0.95 0.95

Image segmentation 0.997 0.996 0.989 0.990
Ionosphere 0.970 0.972 0.956 0.967
Satellite image 0.986 0.989 0.981 0.987
Isolet 0.978 0.979 0.975 0.976

6.3 Treatment of noise
This section discusses an important scenario in which it is
particularly profitable to be able to employ a large value
for k. As already pointed out in [10], in presence of noise
in the reference set, the CNNDD classifier can be made
much more robust by increasing the parameter k. In order
to compare CPDD and CNNDD, here it is considered the
same experimental setting of [10] on the Shuttle data set [20]:
the 34,108 points (9 attributes) of the Rad Flow class have
been equally partitioned in a training set and an inlier test
set (of 17,054 points each), whereas the 9,392 points of the
other classes form an outlier test set. A noisy version of the
training set has been obtained by adding the 5% (850 points) of
mislabeled points (randomly selected points belonging to the
outlier test set). Figure 8 shows the result of the experiment.
Figure 8(a) reports the ROC curves (solid lines) of CPDD
and the relative sizes of the consistent subsets (dashed lines),
while Figure 8(b) reports the same information for CNNDD
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Fig. 8. Experiments in presence of noise.

(k ∈ {1, 8, 32}). By increasing k, both the two methods
considerably increase their accuracy, though for the same k
the AUC associated with CNNDD is slightly greater than
that associated with CPDD. However, as far as the subset
size is concerned, the difference between the two methods
is marked. As a matter of fact, it can be observed that the size
of the CNNDD subset rapidly grows with k, while exactly
the opposite holds for the CPDD subset. For example, for
k = 32, when FNR ≈ 0.1 and TNR ≈ 0.8, the ratio |S|/|D|
is about 0.5 for CNNDD, but less than 0.1 for CPDD. This
behavior is better visualized in Figure 8(c), reporting the F-
score associated with a certain value of relative subset size.
The F-score is a combined measure of precision and recall,
which are related to FNR and TNR. It can be noticed that
the greater the F-score, the smaller (greater, resp.) the size of
the CPDD (CNNDD, resp.) consistent subset. While CNNDD
appears to be slightly more accurate than CPDD for the same
value of k, CPDD is undoubtedly vastly more accurate when
the same value of relative subset size is considered (see the
curves for |S|/|D| < 0.2).

6.4 Comparison with other one-class classifiers

In this section the CPDD classifier is compared with the one-
class SVM [21], [22] and the Core Vector Data Description
(CVDD) classifiers2 [5], [6], two well-known one-class clas-
sification methods, both based on the SVM algorithm. As for
the one-class SVM, the radial basis function kernel has been
employed. The parameter γ has been varied and the curve
associated with the best AUC has been selected. To obtain
the ROC curve for the CVDD method, the regularization
parameter C has been varied from 1 to 106. The radial basis
function (RBF) kernel with the parameter γ automatically
determined by the algorithm has been used. As for the CPDD
rule, the parameters employed are k = 4, % = 1, and
η ∈ {0.95, 1.00}.

Figure 9 compares the ROC curves of the methods. As far
as the size of the model of the one-class SVM is concerned,
for small FNRs the size of the CPDD subset is similar to the
number of support vectors of the one-class SVM (for greater
values of FNRs the former number is much smaller than the

2. The LibCVM implementation of CVDD available at
http://www.cse.ust.hk/∼ivor/cvm.html has been used.

latter one). Moreover, by setting the parameter η to 0.95, the
size of the CPDD subset can be further decreased. If we
consider the results for η = 0.95 (see also the table in Section
6.2), CPDD performs better than SVM both in terms of AUC
that in terms of size of the model on the first three data set.
On the fourth one, that is Isolet, the AUC is about the same,
but the model of CPDD is smaller. The AUCs of CVDD and
CPDD were comparable, with CPDD performing better than
CVDD in some experiments, and the vice versa in some others.
However, as far as the size of the model is concerned, for low
FNRs the CVDD classifier presents a noticeable number of
support vectors, amounting to about the 20% of the data set
size. As a result, the model of CVDD is much more large than
that of CPDD, which is an undesirable property.

Very high-dimensional data sets. SVM-based algorithms are
known to perform well with high-dimensional data. Hence,
next it is considered the Arcene very-high dimensional data
set [20]. The objects of this data set are composed of 10,000
features, each feature indicating the abundance of proteins in
human sera for a certain mass value. The training set and the
inlier test set consist of 44 elements each, while the outlier test
set contains 112 elements. Figure 10 reports the ROC curves of
CPDD (marked with circles; k = 1), one-class SVM (marked
with triangles; RBF kernel with γ automatically selected), and
CVDD (marked with squares; RBF kernel with γ = 10−9)
and the corresponding size of the models (dashed curves).
As for the accuracy, CPDD performed very well. Compare
the AUCs of the different methods, that are 0.812 for CPDD,
0.615 for one-class SVM, and 0.778 for CVDD. Moreover,
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(d) CPDD=0.978, SVM=0.977
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Fig. 9. Comparison between the CPDD rule and the CVDD.

as for the size of the model, CVDD confirmed the behavior
already observed, in that the number of its support vectors
corresponds to a considerable fraction of the training set size.
In this case, one-class SVM presents a model which is smaller
than that of CPDD. However, it must be noticed that in this
experiment the ROC curve of one-class SVM is undefined for
FNRs in the range [0, 0.3] and that its accuracy is not very
good compared with the other two methods. Summarizing,
CPDD exhibited the best combination of accuracy and size of
the model.

6.5 Experiments using the Fast CPDD method

This section presents experiments conducted by using the Fast
CPDD algorithm. FCPDD has been compared with CPDD and
CNNDD. In all the experiments, the sample size s has been set
to s = 100. Moreover, if not otherwise stated, the value of the
parameter θ has been set so that the corresponding empirical
error is approximatively 3h.

Scalability analysis. In order to study the scalability behavior
of the FCPDD algorithm, in this section experiments on two
families of synthetically generated data sets, that are the Nor-
mal 1D (a one-dimensional normal standard distribution) and
Normal 2D (a two-dimensional normal standard distribution),
are reported. The data sets of the same family differ for the
number n of objects, with n varying from ten thousands to
one million. The parameter θ has been set to 0.13 for the 1D
data set, and to 0.68 for the 2D, corresponding about to an
empirical error of the 3h. The parameter k has been set to
about the 1h of n. Results of FCPDD are averaged over ten
runs.

Figure 11(a) reports the number of accepted data set objects
(the value n − |C|) in correspondence of the size |S| of the
consistent subset S determined during the execution of the
FCPDD algorithm for the 2D data set. Each circle on the curve
represents the size of |S| at the end of a generic main iteration
of the algorithm (step 2 of Figure 3). The FCPDD algorithm
converges in few iterations and produces a subset composed
of a very small fraction of data set objects. It is below the 1h
in all cases.

Figure 11(b) shows the execution time of the FCPDD,
CPDD, and CNNDD algorithms. It is clear that FCPDD is
faster than CPDD of some orders of magnitude and, moreover,
that the relative difference between the two methods increases
with the size of the data set. As for the CNNDD method,
it is faster than FCPDD for small data sets (when absolute
execution times are of few seconds), but FCPDD scales much
better than CNNDD and, for large data sets, the former
method clearly outperforms the latter one. E.g. compare the
86.5 (188.4, resp.) seconds employed by FCPDD on the
1D (2D, resp.) data set, with the 5,282.8 (4,856.3, resp.)
seconds employed by CNNDD on the same data set.3 To
better understand the time savings achievable by using FCPDD
instead of CPDD, consider the relative number of distances,
that is to say the actual number of distances computed by
FCPDD divided by the worst case quadratic one. On the
Normal 1D data set, the relative number of distances is 7.73%
for 10K objects, 1.31% for 100K, and 0.10% for 1,000K,
while on the Normal 2D data set, is 7.94% for 10K, 1.46%
for 100K, and 0.17% for 1,000K.

3. Experiments have been performed on a computer having a 2.40GHz Core
2 Duo CPU and 4GB of main memory.
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Fig. 11. Sensitivity analysis of the Fast CPDD algorithm.

Figure 11(c) shows the subset size of the FCPDD, CPDD,
and CNNDD algorithms. Interestingly, despite the fact that
FCPDD does not consider all the pairwise object distances, it
is able to return a subset of size practically identical to that
computed by CPDD, but at a reduced computational cost. It
can be also noted that the subset computed by CNNDD grows
more rapidly with respect to CPDD/FCPDD. E.g. compare
the 57 (431, resp.) objects employed by FCPDD on the 1D
(2D, resp.) data set, with the 32,015 (43,704, resp.) objects
employed by CNNDD on the same data set.

Accuracy with respect to CPDD. Next the accuracy of
the CPDD and FCPDD methods is compared on the Shuttle
data set (the normal class consists of 34,108 objects with 9
attributes, while there are 9,392 abnormal test objects). The
following table reports the results for k = 8 and θ ∈ [10, 30].

θ = 10 θ = 20 θ = 30

Subset size FCPDD 1,160 90 59
CPDD 911 106 57

Exec. time [sec] FCPDD 10.2 3.5 2.9
CPDD 123.4 163.1 204.9

Emp. err. [%] FCPDD 0.9 0.7 0.5
CPDD 0.9 0.6 0.5

TNR [%] FCPDD 92.9 81.3 69.5
CPDD 92.2 82.6 68.6

Results confirm that the size of the subset computed by
FCPDD is close to that of the subset computed by CPDD.
As for the execution time, FCPDD is one or two orders
of magnitude faster than CPDD. Importantly, as far as the
empirical error and the TNR are concerned, they are always
similar. The results agree with those previously illustrated. It
can be concluded that the Fast CPDD computes a subset of
size and accuracy comparable to that associated with the subset
returned by the CPDD, while guaranteeing great time savings.

Experiments on very large data sets. In this experiment
the Forest Cover Type very large data set, consisting of 10
quantitative variables, has been considered. The most pop-
ulated class, that is the Lodgepole Pine, was designated as
the normal class and partitioned in a training set of 254,971
objects and test set of 28,330 objects. The parameter k has
been varied between 150 and 1,500. The size of the consistent
subset is reported in Figure 12(a). The smaller k, the larger the
consistent subset. For k = 150 the relative size of the subset is
very small, less than the 3%. Figure 12(b) shows the empirical
error (the curve displayed corresponds to the value 100 minus

the actual value of empirical error) and the true negative
rate on the classes Cottonwood/Willow and Krummholz, which
are the two classes best separated from the normal one. For
k = 150 the classifier appears to be very effective. Moreover,
the following table reports the absolute and relative execution
times of the FCPDD algorithm.

k = 150 k = 300 k = 600 k = 1,500

Exec. time [sec] 540.1 480.3 186.4 92.7
Rel. exec. time [%] 6.3 5.7 2.1 1.0

Thus, FCPDD was able to determine an high quality consistent
subset with great time savings, since in all cases only a small
fraction of the pairwise distances were computed.

7 DISCUSSION AND CONCLUSIONS
One-class classification methods are the natural option when
only data from one single class is available and the goal
is to discriminate between objects belonging to the class
represented by the available data and objects that do not belong
to that class. The assumption is that one is able of modeling
only normal behavior and everything deviating from it should
be rejected. In principle, this kind of approach could be used
in a multi-class environment, but it is not the standard setting
for one-class classifiers, which are semi-supervised learners.

In this work the Prototype-based Domain Description one-
class classifier has been presented. It has been shown that the
PDD classifier is equivalent to the NNDD classifier and that
it generalizes statistical tests for outlier detection. Moreover,
the concept of PDD consistent subset has been introduced
and it has been shown that computing a minimum size PDD
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Fig. 12. Experiments on the Forest Cover Type data set.
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consistent subset is not approximable within any constant
factor. Two algorithms for computing a PDD consistent subset
have been presented: CPDD guarantees a logarithmic approx-
imation factor, while FCPDD efficiently manages very large
data sets. Interestingly, despite the fact that FCPDD does not
consider all the pairwise object distances, it has been shown
FCPDD is able to return a subset of size practically identical
to that returned by CPDD, but at a reduced computational cost.

The PDD classifier is nearest neighbor based, but it clearly
differs from the nearest neighbor classification rule. In that
respect, the same considerations drawn in [10] concerning
differences between NNDD and the k nearest neighbor rule
can be applied to PDD.

Other peculiarities of the novel method and differences with
existing ones are summarized next. As already pointed out
in [10], the CNNDD method can be very accurate, but in
order to achieve reasonable condensation ratios it has to be
employed with small values for the parameter k. However, this
characteristic may represent a limitation in different scenarios.
As a matter of fact, using a small k increases the risk of incor-
porating noise in the model, thus lowering the quality of the
classifier. Moreover, the notion of unification with statistical
definitions introduced in Section 2.3 requires to employ values
of k which are related to the size of the training set. For k = 1
CPDD tends to coincide with CNNDD and, in general, CPDD
retains an interesting relationship with the CNNDD rule (see
Theorem 2.6). Despite these facts, the larger k, the smaller the
size of the CPDD consistent subset, while exactly the opposite
holds for CNNDD. And, indeed, experiments concerning the
treatment of noise (see Section 6.3) highlight that CPDD is
undoubtedly much more accurate than CNNDD when the same
value of relative subset size is considered. Also, experiments
concerning the scalability analysis employing values for the
parameters suggested by the statistical theory (Section 6.5),
have shown that the subset computed by CNNDD grows much
more rapidly with respect to that computed by CPDD. The
same experiment shows that FCPDD scales much better than
CNNDD, with the former method clearly outperforming the
latter one in terms of execution time.

Comparison with SVM-based one-class classification meth-
ods is also informative. In particular, CPDD is more accurate
than the one-class SVM and presents a model of smaller size.
The accuracy of CPDD and CVDD are comparable, but as far
as the size of the model is concerned, the model of CVDD is
sensibly larger than that of CPDD since for low values of false
negative rate the CVDD classifier presents a notable number of
support vectors. Despite the fact that SVM-based methods are
known to perform well in high-dimensions, CPDD exhibited
the best combination of accuracy and size of the model on
this kind of data.

To conclude, the CPDD method has solid theoretical foun-
dations, both from the point of view of the underlying notion of
normality than from the algorithmic point of view. CPDD over-
comes some limitations of the CNNDD rule while retaining its
good accuracy properties, is competitive over other one-class
classification algorithms, and is also effective in classifying
large data sets.
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