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Discovering Characterizations of the Behavior of
Anomalous Sub-populations

Fabrizio Angiulli, Fabio Fassetti and Luigi Palopoli

Abstract—We consider the problem of discovering attributes, or properties, accounting for the a-priori stated abnormality of a group
of anomalous individuals (the outliers) with respect to an overall given population (the inliers). To this aim, we introduce the notion
of exceptional property and define the concept of exceptionality score, which measures the significance of a property. In particular,
in order to single out exceptional properties, we resort to a form of minimum distance estimation for evaluating the badness of fit
of the values assumed by the outliers compared to the probability distribution associated with the values assumed by the inliers.
Suitable exceptionality scores are introduced for both numeric and categorical attributes. These scores are, both from the analytical
and the empirical point of view, designed to be effective for small samples, as it is the case for outliers. We present an algorithm,
called EXPREX, for efficiently discovering exceptional properties. The algorithm is able to reduce the needed computational effort by
not exploring many irrelevant numerical intervals and by exploiting suitable pruning rules. The experimental results confirm that our
technique is able to provide knowledge characterizing outliers in a natural manner.

Index Terms—Knowledge discovery, anomaly characterization, unbalanced data, mixed-attribute data.
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1 INTRODUCTION

Assume that a data population is given characterized
by a certain number of attributes. Assume, moreover,
that the information is provided that a (typically small)
fraction of the individuals in that data population is
anomalous, but no reason whatsoever is given as to why
these individuals behave anomalously. An interesting
and challenging learning task consists therefore in char-
acterizing the behavior of such anomalous individuals
and the work [1] precisely considers the problem of dis-
covering attributes that account for the (a-priori stated)
abnormality of one single individual within a given data
population.

In this paper, we extend the perspective of that ap-
proach in order to be able to deal with groups, or sub-
populations, of anomalous individuals. As an example,
consider a rare disease and assume a population of
healthy and unhealthy human individuals is given; here,
it would be very useful to single out properties charac-
terizing the unhealthy individuals.

An exceptional property is an attribute characterizing the
abnormality of the given anomalous group (the outliers)
with respect to the normal data population (the inliers).
Moreover, each property can have associated a condition,
also called explanation, whose aim is to single out a
(significant) portion of the data for which the property
is indeed characterizing anomalous sub-populations.

In order to single out significant properties, we re-
sort to minimum distance estimation methods, that are
statistical methods for fitting a mathematical model to
data. To judge the quality of a property, we make use
of exceptionality scores, that are functions measuring the
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badness of fit of the values assumed by the outliers
compared to the probability distribution associated with
the values assumed by the inliers.

The exceptionality scores here defined are based on a
randomization test using the Pearson chi-square criterion
[2], for categorical properties, and on the Cramér-von-
Mises criterion [3], for numerical properties. These cri-
teria evaluate the badness of fit of a probability dis-
tribution F compared to a sample set. In particular,
we employ as reference distribution F the empirical
distribution function associated with the population of
inliers and, as the sample set, the population of outliers.
We note that the proposed exceptionality scores are
specifically designed for the task at hand, in which
we compare a rare population with a large population
of normal individuals. Also, we present an algorithm,
called EXPREX, or EXceptional PRoperty EXtractor, that
automatically singles out the exceptional properties and
their associated explanations.

In order to make the significance of the kind of knowl-
edge mined by the EXPREX algorithm clear, we briefly
illustrate next a real life example application scenario,
which we will subsequently analyze in detail in Section
5. The example refers to the analysis of a genetic dataset
(which Prof. Passarino of the Department of Cell Biology
of the University of Calabria provided us), exploited in
[1] as well, from which to induce some characterization
of the influence of the genetic profiles of individuals
upon survival at old age. This dataset has been the
object of a separate investigation in [4], which resulted
in a well-assessed characterization of genetic traits of
longevous individuals as opposed to normal ones.

The biological interest here is in finding the influence
of a gene on the longevity for individuals of a population
or of a portion thereof. In particular, authors of [4] stud-
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ied the influence of the genetic profiles on the longevity
of males and females, separately. We notice that the kind
of knowledge of interest in [4] is very similar to the
one we aim to learn, since it considers a portion of
data composed of males (females, resp.), which corre-
sponds to the explanation SEX =“M” (SEX =“F”, resp.),
and searches for an attribute, which corresponds to an
exceptional property, characterizing anomalous longevous
individuals (the outliers) w.r.t. normal ones (the inliers).

The results presented in [4] assert that the genes
“APOE” and “HSP90-β” show a significant effect
on the longevity among females. Conversely, when
considering male individuals, the attributes (genes)
“APOE”, “APOA1” and “SIRT3” behave differently on
the longevous individuals with respect to the normal
individuals.

We experimented our technique on this dataset by
considering the individuals over a hundred years of age
as the outliers and the remaning ones as the inliers.
Details of the experiments are reported in Section 5. Our
algorithm returned as exceptional, among others, also
the properties pointed out in [4]; the following table
reports the values of our exceptionality score τ on the
genes singled out by [4].

Explanation: SEX =“F” Explanation: SEX =“M”
APOE τ = 0.995 APOE τ = 0.970

HSP90-β τ = 0.972 SIRT3 τ = 0.995
APOA1 τ = 0.992

We note that in all cases the value of τ is statistically sig-
nificant (larger than 0.95, corresponding to significance
level α = 0.05) in agreement with the results of [4],
hereby confirming that our approach is, in fact, sensible.
To sharpen the significance of these results, we note that
the relevance of the gene “APOE” for the longevity was
also pointed out in [5].

The commonality of the results produced by our
approach with those described in the work [4], which
have been the object of an independent study, provides
evidence that the concept of exceptional property we
put forth in this work is indeed significant and sensible.
The recalled commonality of results, though, does not
correspond to any analogies in the methods adopted
here and in [4]:

• First of all, in [4] the sub-populations object of
analysis are manually selected by the authors, while
in our approach properties and associated explanations
are automatically singled out by means of a search
algorithm, using the exceptionality score.

• Also, in order to assess the statistical significance of
the induced knowledge, we employ different criteria
than in [4]. This is motivated by our need to con-
struct a generally applicable method, which behaves
properly, in particular, with very small samples (as
outlier sets usually are).

Further evidence for the significance of our approach
stems from the results we obtained from the experimen-
tal campaign we carried out using our technique which

are illustrated in full in Section 5.
The rest of the work is organized as follows. In Section

2 we present the exceptionality scores and the defini-
tion of exceptional property associated with a group of
outliers. In Section 3 we discuss some literature related
to this work and point out analogies and differences.
In Section 4 we describe the EXPREX algorithm for
detecting exceptional properties with associated explana-
tions. Then, in Section 5, we present experimental results
conducted by using the EXPREX algorithm. Finally, in
Section 6, we draw our conclusions.

2 EXCEPTIONAL PROPERTY

In this section the concept of exceptional property is
introduced and the exceptional property discovery prob-
lem is stated. The section is organized as follows. We
start by giving some preliminary definitions (Section
2.1), then we introduce the exceptionality score for
categorical properties (Section 2.2) and for numerical
properties (Section 2.3), and, finally, we formally define
the exceptional property discovery problem (Section 2.4).

2.1 Preliminary definitions
An attribute a is an identifier with an associated domain,
denoted as Dom(a), which can be either categorical or
numerical. Given a set of attributes A = {a1, . . . , ad},
Dom(A) denotes the domain Dom(a1)× · · · ×Dom(ad).

An object t on a set of attributes A is a d-uple
〈v1, . . . , vd〉 of Dom(A) (that is, each vi belongs to
Dom(ai)). In the following, t[ai] denotes the value vi.

A dataset D on a set of attributes A, is a bag of objects
on A.

Let A be a set of attributes. A condition on A is an
expression of the form a ∈ [l, u], where (i) a ∈ A, (ii)
l, u ∈ Dom(a), and (iii) l ≤ u, if a is numeric, and l =
u, if a is categorical. If l = u, the interval I = [l, u] is
sometimes abbreviated as u and the condition as a ∈ I
or a = I .

Let D be a dataset on a set of attributes A and let c be
a condition a ∈ [l, u] on A. An object o of D satisfies the
condition c, if and only if o[a] equals l, if a is categorical,
or l ≤ o[a] ≤ u, if a is numerical. This notion can be
extended to a set of conditions. In particular, o satisfies a
set of conditions C if and only if o satisfies each condition
c ∈ C.

Let D be a dataset on a set of attributes A, and let C
be a set of conditions on A. In the following, DC denotes
the dataset consisting of the objects t ∈ D satisfying C,
and D[A′] denotes the projection of the dataset D on the
set of attributes A′ ⊆ A.

Definition 1 (Exceptionality score): Given two datasets
Do (the outlier dataset) and Di (the inlier dataset) on a
set of attributes A, an (exceptionality) score of Do w.r.t. Di

on the attribute a ∈ A, denoted as τa(D
o, Di) (or simply

τ , if no ambiguity arises), measures the badness of fit of
the values in the set Do[a] compared to the probability
distribution associated with the values in the set Di[a].
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The smaller the value τ , the more likely the involved
values come from the same distribution. With the score
τ , a threshold value θτ is associated (which also may
depend on a given significance level α) representing the
value above which we can reject the hypothesis that data
from Do comes from the same distribution as those in
Di. If τa(Do, Di) > θτ then we say that a is an exceptional
property for Do w.r.t. Di according to τ . 2

Intuitively, the worse the values in Do[a] fit the distri-
bution of the values in Di[a], the better the attribute a
characterizes the outlier sub-population.

In particular, in order to define proper exceptionality
score functions, we resort to minimum distance esti-
mation methods, that are statistical methods for fitting
a mathematical model to data. In the following, we
introduce the exceptionality score functions we adopt
in this paper. Due to the different nature of their do-
main, we distinguish between categorical and numerical
attributes.

2.2 Categorical properties

Consider a categorical attribute. A well-known statistical
test used for minimum distance estimation on categorical
domains is the Pearson chi-square test χ2 [2], a common
application of which is realized by taking the outcomes
of a categorical variable as events.

In order to build a proper exceptionality score, we
use the goodness-of-fit test, which establishes if the
observed frequency distribution differs from a reference
one. We assume as reference distribution the empirical
distribution function associated with the population of
inliers. In particular, let

• n be the total number of outliers |Do|,
• m be the number of inliers |Di|,
• V a be the set {v : v ∈ Do[a] ∨ v ∈ Di[a]} of the

distinct values assumed by the attribute a in the
datasets Di and Do,

• r be the number |V a| of distinct values in the
domain of a, namely V a = {v1, . . . , vr},

• fi be the frequency of the value vi in Do[a], that is
fi = |{t ∈ Do : t[a] = vi}|, and

• ei be the frequency of the value vi in Di[a], that is
ei = |{t ∈ Di : t[a] = vi}|.

The chi-square test relies on the chi-square statistic X2,
which is the sum of the squared difference between the
observed frequencies and the expected ones, normalized
on the value of the expected frequencies. Notice that the
expected frequency associated with the value vi can be
obtained from the empirical distribution of the inliers as
ei

n
m . Thus:

X2 =

r∑
i=1

(
fi − ei

( n

m

))2

ei

( n

m

) =

 r∑
i=1

f2
i

ei

( n

m

)
− n. (1)

It is known that the X2 statistic asymptotically ap-
proaches the χ2 distribution with r − 1 degrees of

freedom, hence, the X2 value is used to calculate a p-
value1 by comparing its value to the proper chi-squared
distribution.

However, the direct application of the chi-square test
to define a proper exceptionality score presents two main
criticalities.

The first criticality is related to the correct computa-
tion of the formula in Equation (1) in the presence of
expected frequencies ei evaluating to zero. This problem
can be solved by noticing that having some ei equal to
zero could be assimilated to the scenario in which the
corresponding events have not been observed to occur
at all due to the fact that the sample data is finite. In
this case, underlying probabilities can be estimated by
means of the Laplace’s rule of succession [6]: when there
is no other prior knowledge, the expected probability of
a specified event is given by

(
s+ 2

r

)
/(m+ 2), where s

is the number of actual outcomes of the specified event
in m actual samples, given the r events in total. Taking
into account the above correction, in order to determine
expected probabilities, the formula in Equation (1) can
be replaced by the following one:

X2 =

 r∑
i=1

f2
i(

ei +
2

r

)(
n

m+ 2

)
− n. (2)

By letting f denote f1, . . . , fr and e denote e1, . . . , er, the
formula in Equation (2) is also denoted as X2

e(f).
As for the second criticality, it must be noticed that

when the expected values are small, the chi-square test
(and also its alternatives, such as the G-test and others
[6]) give inaccurate results. As a matter of fact, the
significance value provided by the chi-square test is
an approximation, because the distribution of the test
statistic X2 is only approximately equal to the theoretical
chi-squared distribution χ2. This approximation is inade-
quate when sample sizes are small, usually for n ≤ 1,000,
or the frequency counts are low. A common rule is that
the generic frequency fi should be equal to or greater
than 5 in 80% of cases, and that there are no fis equal to
0. Note that these conditions are not met in the scenario
we consider here, since the outlier dataset consists of
a small number n of objects, and, moreover, frequency
counts fi are also expected to be very small, with a
sensible fraction of them being equal to 0.

In such a situation, in order to avoid inaccurate
inference, alternative kinds of test, such as exact or
randomization tests, are needed to be used. Exact tests
are so called because the significance of the deviation
from a null hypothesis is calculated exactly, rather than
relying on an approximation that becomes exact only
when the sample size grows to infinity. Here, a very
natural alternative to the χ2 test for small sample sizes

1. Recall that the p-value is the probability of obtaining a test statistic
at least as extreme as the one that was actually observed, assuming
that the null hypothesis (in our case, that the observed distribution
complies with the theoretical one) holds.
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Function τ cata (Do, Di)
1: Set count to 0
2: for i ranging in 1..N do
3: Randomly generate a bag B of n values from the set {v1,

. . ., vr}, with the probability p(vi) of including vi in B
given by p(vi) =

(
ei +

2
r

)
/(m+ 2)

4: Let g = g1, . . . , gr be the frequency counts in B associated
with the elements vi

5: if X2
e(g) ≥ X2

e(f) then
6: count = count+ 1

7: p = count/N
8: return 1− p

is the Fisher’s exact test [7], [8]. This test works by
calculating the probabilities of all possible combinations,
that preserve both row and column totals, of integer
numbers in an r × c contingency table (in our case, the
table would consist of two columns, that is c = 2, one
storing the values fi, and the other one storing the values
ei), and then computing the sum of the probabilities of
the combinations that are as extreme or more extreme
than the observed data. However, as r · c gets larger or
as the total sample size n + m gets larger, the number
of possible combinations increases dramatically, to the
point that computing the test becomes infeasible. Un-
fortunately, this problem characterizes any other exact
test, since these tests take their decision on a reference
distribution obtained by calculating all possible values of
the test statistic under rearrangements of the labels on
the observed data, and, as such, have exponential cost
both in the sample size and in the number of possible
values in the domain.

When there are too many possible orderings of the
data, in order to avoid complete enumeration, asymp-
totically equivalent exact tests, also called randomization
tests, can be created by taking as reference distribution a
relatively small sample of the whole set of combinations.
Sometimes as few as N = 400 randomly generated
combinations are sufficient to generate a reliable answer
[6]. Thus, in order to obtain accurate inference on small
samples, which is a peculiarity of outlier populations,
we make use of a randomization test, as defined in the
following.

The test works by randomly generating N bags B,
each one consisting of n values taken from the domain
V a = {v1, . . . , vr}, representing N random outcomes
of the dataset Do[a]. The probability p(vi) of inserting
the value vi in the bag B is equal to the probability
of observing vi under the null hypothesis, that is the
frequency (ei +

2
r )/(m+2) of vi in the inlier dataset. Let

g = g1, . . . , gr be the frequency counts in B associated
with the elements vi. For each randomly generated bag
B, Pearson’s chi-square statistic X2

e(g) (as defined in
Equation (2)) is calculated. The fraction of these random
outcomes that have a chi-square statistic equal to or
greater than X2

e(f), namely the value associated with the
dataset actually observed, is the returned p-value.

The exceptionality score τ cata (Do, Di) defined for cate-

gorical attributes is eventually computed as one minus
the above computed p-value (hence, its value belongs
to the interval [0, 1]). The computation of τ cata (Do, Di) is
illustrated in the figure above.

Recall that the lower the p-value, the less likely the
result holds if the null hypothesis is true. Consequently,
the alternative hypothesis is accepted (or, equivalently,
the null hypothesis is rejected) if the p-value is less
than the significance level α. We refer to the statistical
literature (see, e.g., [8], [9]) according to which a well-
founded value for α is 5% .

Thus a is an exceptional property for Do w.r.t. Di

according to τ cat at the significance level α if and only
if τ cata (Do, Da) > θcat, with θcat = 1− α.

2.3 Numerical properties

Consider a numerical domain. A basic test used to assess
whether a given distribution is suited to a sample, is
the Kolmogorov-Smirnov test. This test uses as statistic
the supremum of the absolute difference between the
empirical distribution function F and the theoretical
distribution function F̂ , defined as:

sup
x

|F (x)− F̂ (x)|.

The above statistic represents a distance between the em-
pirical distribution function of the sample and the cumu-
lative distribution function of the reference distribution.
However, in practice, the Kolmogorov-Smirnov statistic
requires relatively large number of data to properly reject
the null hypothesis.

The Cramér–von-Mises test is an alternative to the
Kolmogorov-Smirnov test. This test uses the integral
of the squared difference between the empirical and
the estimated distribution functions [3] as the statistic,
defined as follows:

ω2 =

∫ ∞

−∞
[F (x)− F̂ (x)]2 dF̂ (x) (3)

In particular, let S = {x1, x2, . . ., xn} be the set of
observed values, listed in increasing order. Then, the
following identity holds:

nω2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F̂ (xi)

)2

. (4)

The right term of Equation (4) will be denoted as
cvmF̂ (S).

If cvmF̂ (S) is larger than a certain tabulated thresh-
old value, then we can reject the hypothesis that the
observed data comes from the distribution F̂ . The fol-
lowing table reports the threshold values of the test for
various sample sizes n (first row) and significance levels
α (first column):

α \ n 2 5 10 30 60 100
0.01 0.186 0.300 0.320 0.330 0.330 0.340
0.05 0.175 0.199 0.212 0.218 0.220 0.220
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As already done for categorical domains, in this case
we also employ as reference distribution F̂ the empiri-
cal distribution function associated with the population
of inliers. Given a numerical attribute a, the reference
distribution Fa associated with a is defined as:

Fa(x) =
|{Di[a] : Di[a] ≤ x}|

|Di|
,

Then, the exceptionality score τnuma (Do, Di) defined for
numerical attributes is computed as cvmFa(D

o[a]).
The rationale underlying the use of the Cramér–von-

Mises test criterion as exceptionality score τnum is that
it is very appropriate for the task at hand, in which we
compare a small population, composed of outliers, with
a larger population. As a matter of fact, the criterion
can be safely applied even when very small samples are
available, as one including as few as just two observa-
tions [3].

2.4 Explanation-Property pair

Next, we provide the definition of exceptional
explanation-property pair and of the associated mining
problem.

For an attribute p, by τp we define either τnump or
τ catp , depending on p being a numerical or categorical
attribute, respectively.

Definition 2 (Exceptional Explanation-Property pair):
Let Do (outliers) and Di (inliers) be two datasets on
a set of attributes A, and let τ be an exceptionality
score. A pair 〈E, p〉, where E is a set of conditions on
A and p is an attribute of A not occurring in E, is an
exceptional explanation-property pair in Do w.r.t. Di (or,
simply, exceptional pair) if and only if the attribute p is
an exceptional property for Do

E w.r.t. Di
E according to

τ , that is, if τp(D
o
E , D

i
E) > θτ . In this case the attribute

p is said to be an exceptional property and the value
τp(D

o
E , D

i
E) is called exceptionality (score) of p (with

explanation E).
A desideratum of the explanation E is that it covers

as many outliers as possible and a sensible fraction of
inliers. Hence, we say that the exceptional pair is repre-
senting, if it holds that |Do

E | ≥ σo|Do| and |Di
E | ≥ σi|Di|,

where σo and σi are two suitable frequency thresholds.
Definition 3 (Exceptional Property Discovery Problem):

Let Do and Di be two datasets on the same set of
attributes. The Exceptional Property Discovery Problem
is defined as follows: find the representing exceptional
explanation-property pairs in Do w.r.t. Di.

3 RELATED WORK

In this section, we compare our approach with some
relevant literature somehow related with the presented
work. For the sake of clarity, relevant papers are grouped
into categories according to the specific task they are
intended to solve, that are: Outlier detection, Outlying

property discovery, Emerging patterns, Contrast sets, Sub-
group discovery, Rule-based classifiers, and Association rule
mining.

Outlier detection. Outlier detection is a well-known dis-
covery problem [10]. We notice that the task considered
here actually deals with outliers, but not in the classical
sense of discovering them. In particular, approaches to
outlier detection can be classified in supervised, semi-
supervised, and unsupervised. Supervised methods ex-
ploit the availability of a labeled dataset, containing
observations already labeled as normal and abnormal,
in order to build a model of the normal class [11]. Semi-
supervised methods assume that only normal examples
are given and the goal is to find a rule partitioning
the object space into an accepting region, containing
the normal objects, and a rejecting region, containing
all the other objects [12]. Unsupervised methods search
for outliers in an unlabeled dataset by assigning to each
object a score which reflects its degree of abnormality.
These methods can be classified, in turn, as distance-based
[13], [14], [15], density-based [16], MDEF-based [17], and
knowledge-based [18], [19], [20], and others. It must be
noticed that the problem addressed here is completely
different from supervised and semi-supervised outlier
detection, and, moreover, is to be considered orthogonal
to the unsupervised outlier detection task. Indeed, in
outlier detection, a set of observations is given in input
and we are interested in discovering those observations
(i.e., the outliers) that are mostly dissimilar from the
remaining ones, while here the outliers (anomalous sub-
populations) are given in input and we are interested in
discovering the motivations underlying their abnormal-
ity.

Outlying property discovery. In [1] a data population is
assumed to be given, characterized by a certain number
of attributes, and the information is provided that one
of the individuals in the data population is abnormal. In
this context, the problem of discovering sets of attributes
that account for the (a-priori stated) abnormality of such
an individual is considered. Each subset of attributes is
intended to represent a property of individuals. A prop-
erty witnesses the abnormality of an object if the combi-
nation of values the object assumes on these attributes is
very infrequent with respect to the overall distribution of
the attribute values in the dataset, and this is measured
by means of the so called outlierness function. Global
and local properties are introduced. Global properties are
subsets of attributes explaining the given abnormality
with respect to the entire data population. With local
ones, instead, two subsets of attributes are singled out.
The first subset of attributes is used to select a sub-
population. In particular, only the individuals assum-
ing on this subset of attributes the same value as the
exceptional individual are selected. The second subset
of attributes justifies the abnormality of the exceptional
individual within the given sub-population.

As far as the differences with the approach [1] are
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concerned, we note that the method proposed here is ca-
pable of discovering outlying properties associated with
groups of anomalous individuals, while in [1] only one
single anomaly can be compared with the normal popula-
tion. In this respect, we note moreover that an approach
supposedly consisting in finding the outlying properties
of each anomaly of the group separately from the others,
and then “merging” them to obtain properties valid for
all the individuals of the group, would be weaker than
the approach illustrated here and, in most cases, would
produce no significant information. Indeed, the distri-
bution on the whole set of anomalous individuals of the
attribute values forming the properties would often get
completely lost when the single anomalous observations
are considered one at a time. This discussion will be sub-
stantiated in the section devoted to experimental results
(see Section 5.2). We further point out that the criterion
adopted here to measure the significance of the given
property is completely different from the one employed
in [1]. Indeed, the comparison of a single (abnormal)
value with a potentially large number of (normal) values
requires a very specialized test. As a matter of fact, [1]
presented an outlierness score which is based on mea-
suring how much the frequency of the combination of
values assumed by that object on those attributes is rare
as opposite to the frequencies associated with the other
combinations of values assumed on the same attributes
by the other objects in the population (and, in fact, in
[1] the outlierness was shown to have some connections
with the Gini index employed to measure the heterogeneity
of a statistical distribution). In this respect, while this
outlierness is appropriate for comparing one single value
with a set of values, in the presence of two, even though
unbalanced, distributions, a refined form of test must be
employed in order to discover significant (and, often,
subtler) characterizing properties. Finally, but not less
relevant, since the approach pursued in [1] is based
on measuring the frequency of the occurrence of some
combination of values, it assumes that the attributes
are categorical, while the approach presented here deals
with both numerical and categorical attributes.

Emerging patterns and Contrast sets. Given two sub-
populations, an emerging pattern (EP) [21], [22], [23] is a
set of conditions whose support in one sub-population
differs from its support in the other sub-population.
A ρ-emerging pattern C is one in which the growth
rate, namely the ratio between the supports of C in
the two sub-populations, is greater than a user-provided
threshold ρ. Several families of emerging patterns have
been introduced in the literature [23]. For example, a
pattern whose growth rate ρ is infinite is called jumping
emerging pattern (JEP) [24]. It follows from the definition
that a JEP holds for some individuals in one population
and does not hold in the other. Conversely, constrained
emerging patterns (CEP) [25] are the minimal set of
conditions C such that the support of C in one sub-
population is at least α and the support of C in the other

one is at most β, where α and β are used-defined param-
eters. Contrast set mining [26], [27] was first introduced
in [26], [28], and subsequently explored for classification
purposes [29]. Given a population organized in two or
more groups G1, . . . , Gk, the contrast set mining task
looks for a set of conditions C, that are conjunctions
of attribute-value pairs, also called contrast sets, whose
support significantly changes across groups, namely the
support of C is not independent of group membership.
Moreover, for at least one pair of groups Gi and Gj , the
difference of support of C in Gi and Gj must be at least
as large as δ, where δ is a user-defined threshold.

Although there are some analogies between outlier-
explanation pairs and emerging patterns/contrast sets,
since both aim at discovering knowledge which is almost
valid in one of the two sub-populations and almost in-
valid in the other one, relevant differences exist between
the two kinds of knowledge. First of all, the form of
the mined knowledge is different, since an explanation-
property pair consists in a set of conditions (the explana-
tion) and in one attribute (the property), while emerging
patterns/contrast sets take the form of sets of conditions.
Thus, the latter techniques do not single out properties
characterizing differences across sub-populations. No-
tably, differently from emerging patterns, our approach
deals with both categorical and numerical attributes. In
particular, no discretization step is needed in order to
treat numerical attributes as properties. Furthermore, the
significance test exploited by emerging patterns/contrast
sets is based on the support of the pattern in the sub-
populations. Importantly, our exceptionality property
cannot be mapped to an attribute-value pair (and, hence,
simply incorporated in an emerging pattern), since the
exceptionality score compares the distributions asso-
ciated with the exceptional attribute in the two sub-
populations. To conclude, emerging patterns/contrast
sets capture knowledge characterizing a population in
a global sense, since they are based on the notion of
support which is related to the absolute frequency of
the itemset. Conversely, the knowledge mined by means
of the explanation-property pairs characterizes the pop-
ulation in a local sense. Indeed, the explanation selects
a portion of the sub-populations in which the difference
in the “behavior” of the property has a strong evidence.

Subgroup discovery. The Subgroup Discovery Task (SDT)
aims at finding an interesting subgroup of objects with
common characteristics with respect to a given attribute-
value pair, called target variable [23], [27]. It was intro-
duced in [27], [30] for categorical domains and, recently,
extended to numerical domains [31]. The SDT outputs a
subgroup of individuals, identified as those individuals
of the population satisfying a set of conditions, whose
behavior on the target attribute-value pair is different
from the behavior of the population taken as a whole.

Even if there are some relationships with the task
addressed here, the SDT presents relevant differences
with it. In SDT the behavior of the subgroup is compared
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with the whole population and SDT does not deal with
a-priori provided sub-populations. One may think that
the SDT can be exploited to solve the exceptional prop-
erty discovery task by pursuing the following approach:
First, merge the two sub-populations in one population,
then encode in a binary attribute the information about
the sub-populations and, finally, perform the subgroup
discovery task. Nevertheless, this approach is not suited
for the task presented here. Indeed, first of all, one
sub-population is compared with the whole popula-
tion and not with the other sub-population; second,
no property (attribute) distinguishing a sub-population
from the other one would be singled out, while our task
is precisely designed to find such properties (possibly
with an associated explanation). To conclude, our tests of
significance of the explanation-property pairs have been
designed to handle unbalanced sub-populations, while
it is not the case for SDT.

Rule-based (rare class) classifiers and Association rule mining.
The task addressed here is substantially different also
from the rule-based classification task [32], even when
the classifier is trained to predict rare classes [33]. Rules
induced by a rule-based classifier are of the form X → c,
where X is a set of conditions and c is one of the classes.
The goal is to exploit induced rules in order to predict
the class of unclassified objects.

As for rule based-classifiers, while a rule X → c
encodes the information that the class of the individuals
satisfying the set of conditions X is (almost always) c,
our goal is to single out attributes (properties) showing
different behavior across classes. Thus, the criteria for
measuring the significance of the induced knowledge
are sharply different. As for association rules, association
rule miners [34] search for rules of the form X → Y ,
where X and Y are sets of attribute-value pairs, standing
for almost all individuals satisfying X satisfy also Y . Their
purpose is to find rules which are clearly represented in
the dataset at hand, but they do not distinguish between
sub-populations. Moreover, even enforcing the mining
algorithm in employing only a binary variable encoding
the sub-population information as the rule head, the
results would be substantially different from those our
approach allows to obtain, inasmuch as this is precisely
the technique employed by rule-based classifiers in order
to mine their rules.

4 ALGORITHM
In this section we present the EXPREX algorithm (mean-
ing EXceptional PRoperty EXtractor) which solves the
Exceptional Property Discovery Problem introduced in
the previous section. In particular, Section 4.1 describes
the algorithm, while Section 4.2 analyzes its cost.

4.1 EXPREX algorithm
In order to solve the exceptional property discovery
problem the EXPREX algorithm performs, for each
attribute p of the dataset, the following two main steps:

Function GenerateBaseConditions(Do, Di, a, σo, σi)
Input: the outlier dataset Do

the inlier dataset Di

the attribute a
the outlier frequency threshold σo

the inlier frequency threshold σi

Output: the set of base conditions Ca for the attribute a

1: set Ia to ∅
2: if a is a categorical attribute then
3: foreach v in (Do[a] ∩Di[a]) do
4: if |Do

a=v | ≥ σo|Do| and |Di
a=v | ≥ σi|Di| then

5: add v to Ia

6: else // a is a numeric attribute
7: set Out to the ordered set of values Do[a] ∪ {+∞}
8: set In to the ordered set of values Di[a]
9: set V to the ordered set of values Out ∪ In

10: set l′ to the first value in Out
11: set l to minimum between l′ and the first value in In
12: while [l,+∞) captures at least σo|Do| outliers and σi|Di|

inliers do
13: set u′ to the σo|Do|-th value of Out greater than l′

14: repeat
15: set u′′ to the succeeding value of u′ in Out
16: set u to the maximum value in V belonging to

[u′, u′′)
17: if [l, u] selects at least σi|Di| inliers then
18: add [l, u] to Ia

19: set u′ to u′′

20: until u′ is lower than +∞
21: set l to the lowest value in V strictly greater than l′

22: set l′ to the value succeeding l′ in Out

23: set Ca to ∅
24: for i ranging in 1..|Ia| do
25: add the condition (a ∈ Ia

i ) to Ca

26: return Ca

Function CombineBaseConditions(Do, Di, p, B, σo, σi)
Input: the outlier dataset Do

the inlier dataset Di

the current property p
the total set of base conditions B
the outlier frequency threshold σo

the inlier frequency threshold σi

Output: the exceptional explanation-property pairs with
property p

1: set S to ∅
2: if τ(∅, p) is greater than θτ then
3: add 〈∅, p〉 to S

4: set Curr to {∅}
5: repeat
6: foreach condition C in Curr do
7: foreach condition b in B associated with an attribute not

occurring in C do
8: if C ∪ {b} is not in Next then
9: set C′ to C ∪ {b}

10: if all the subsets of C′ of size |C| are in Curr
and both |Do

C | ≥ σo · |Do| and |Di
C | ≥ σi · |Di|

then
11: add C′ to Next
12: if τ(C′, p) is greater than θτ then
13: add 〈C′, p〉 to S

14: set Curr to Next
15: until Curr is empty
16: return S
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Outliers
A1 A2

100 10
105 15
110 20
150 10
200 15
250 20

(a)

Inliers
A1 A2

101 20
105 20
110 20
150 10
155 15
160 10
200 15
205 20
210 10
210 15

(b)

Base Conditions

A1

[100, 110]

A2

[100, 160]
[100, 210]
[100, 250] [10, 10]
[105, 160] [10, 15]
[105, 210] [10, 20]
[105, 250] [15, 15]
[110, 160] [15, 20]
[110, 210] [20, 20]
[110, 250]
[150, 210]
[150, 250]

(c)

Fig. 1: Example of base condition generation

Algorithm 1: EXPREX algorithm
Input: the outlier dataset Do and

the inlier dataset Di

the outlier frequency threshold σo

the inlier frequency threshold σi

Output: the exceptional explanation-property pairs

1: let A be the set of attributes of Do and Di

2: set R to ∅ // the set storing the exceptional explanation-property pairs
3: foreach a ∈ A do

// base condition generation step
4: Ca = GenerateBaseConditions(Do, Di, a, σo, σi)

5: foreach p ∈ A do
// base condition combination step

6: let B be the whole set of conditions
∪

a∈(A\{p}) C
a

7: R = R ∪ CombineBaseConditions(Do, Di, p, B, σo, σi)

8: return R

- Base condition generation step: a set of base conditions
is associated with each attribute different from p;

- Base condition combination step: the base conditions
associated with distinct attributes are combined
together to discover the representing explanation-
property pairs.

Next we illustrate the two aforementioned steps.

Base condition generation step. This step is taken care of
by the function GenerateBaseConditions.

A set of conditions Ca, called base conditions, is asso-
ciated with each attribute a. These conditions are then
combined during the subsequent base condition combina-
tion step in order to form relevant explanations.

The base conditions associated with categorical at-
tributes a are all the conditions of the form a = v, where
v is a value belonging to the domain Do[a] ∩Di[a], and
both |Do

a=v| ≥ σo|Do| and |Di
a=v| ≥ σi|Di| hold (lines

3–5).
As far as numerical attributes a are concerned, it must

be noticed that the size of the set of conditions of the
form a ∈ [v, u], where both v and u are real numbers in
the actual domain Do[a] ∪ Di[a] of a, is quadratic in the
number of dataset objects.

Thus, in order to reduce the large search space as-
sociated with this kind of conditions, the EXPREX
algorithm adopts a strategy consisting in selecting the

relevant subsets of the overall set of conditions.
In particular, the base intervals for numerical attributes

are the intervals I = [l, u], with l and u belonging to the
actual domain of a, satisfying the following points:

1) |Do
a∈I | is at least dσo · |Do|e,

2) |Di
a∈I | is at least dσi · |Di|e,

3) there is no interval [l′, u′] ⊃ [l, u], with l′ and u′

belonging to the actual domain of a, capturing
exactly the same outliers as [l, u] and satisfying
both points 1 and 2.

Intuitively, base intervals are the largest intervals I
capturing a certain set of outliers (by points 3) which
satisfies the frequency constraints on the number of
outliers (by point 1) and inliers (by point 2) selected by
the condition a ∈ I .

In order to compute the base conditions for a numeric
attribute a, the function starts by sorting the set of values
assumed by the dataset objects on the attribute a and
storing them in the set V (lines 7-9). Then, the function
builds the base conditions, starting from the minimal
intervals which can be defined on the outlier set.

In particular, let [l′, u′] be an interval capturing exactly
σo|Do| outliers, with l′ and u′ being two values in Do[a]
(see line 13). The function, in order to satisfy point 3,
determines the interval [l, u] ⊇ [l′, u′], where [l, u] is the
largest interval capturing exactly the same outliers as
[l′, u′] and both l and u belong to V (lines 11 and 21).
In particular, the lower bound l is set either at line 11
(only the first time) or 21 (all the other times), while the
upper bound u is set at line 16.

The set [l, u] satisfies both points 1 and 3 by construc-
tion. If it also satisfies point 2, then it is added to the set
of base conditions (line 17-18).

Then, the function fixes the lower bound l and con-
siders a new upperbound u′ generating a new interval
capturing exactly one outlier more than [l, u], and reiter-
ates the previously described operations (lines 14–20).

Once all the intervals with lowerbound l have been
generated, the function considers the next minimal in-
terval capturing exactly σo|Do| outliers (lines 21–22).

The cost of this function will be discussed in Section
4.2.

Figure 1 reports an example to illustrate the function
GenerateBaseConditions. Assume to set the support thresh-
olds σo and σi to 0.3, then at least 2 outliers and 3
inliers should be captured by the explanations. Consider
the attribute A1. The first interval [l, u] containing at
least 2 outliers is [l, u] = [100, 105] (l = min{100, 101},
u′ = 105, u′′ = 110, and u = max{v : v ∈ V ∩ [u′, u′′)},
that is u = max{v : v ∈ [105, 110)} = 105). Since
the interval [l, u] = [100, 105] contains only 2 inliers, it
has to be enlarged. So u′ is set to 110, u′′ to 150 and
u = max{v : v ∈ V ∩ [u′, u′′)} = 110. Now, the interval
[l, u] = [100, 110] contains at least 3 inliers and hence it
is added to the set of base conditions. Then, u′ is set
to u′′ = 150 and the next iteration starts. The value u′′

is set to 200, u to max{v : v ∈ V ∩ [u′, u′′)} = 160,
and the interval [100, 160] is added to the set of base
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conditions. The function continues in a similar manner.
Figure 1(c) shows the set of base conditions computed
by the function GenerateBaseConditions on the example
database.
Base condition combination step. This step is taken care of
by the function CombineBaseConditions. It tries to combine
base conditions associated with different attributes, and
follows an a-priori like strategy [34] to find the set of
conditions E such that |Do

E | (|Di
E |, resp.) is not smaller

than σo · |Do| (σi · |Di|, resp.). The pairs 〈E, p〉 having
exceptionality score greater than the threshold θτ are
collected and then stored in the set R which maintains
all the exceptional explanation-property pairs discovered
so far.

Consider, again, the example reported in Figure 1.
Since the datasets have two attributes, there are two
properties to take into account. Then, the algorithm
calls twice the function CombineBaseConditions. When the
function CombineBaseConditions is called on the property
p = A1 (p = A2, resp.), the set B consists in the set
of basic conditions generated for the attribute A2 (A1,
resp.).

Consider the function CombineBaseConditions called on
the property p = A2. First of all, lines 2-3 test if the prop-
erty A2 with empty explanation is exceptional. Next, the
exceptionality of A2 is tested when any base condition C
on A1 is used as explanation. If the explanation-property
pair 〈C,A2〉 is exceptional, it is added to the set S to
be returned in the result. An example of explanation-
property pair is 〈A1 ∈ [100, 110], A2〉. Indeed, while the
values assumed on A2 by the set of outliers selected by
the explanation are uniformly distributed in the range
[10, 20], the values assumed by the inliers selected by
the explanation are likely to come from a very different
distribution, since they are all equal to 20. Note that
just one iteration of the cycle between lines 5 and 15 is
performed. Indeed, after the first iteration, Curr contains
all and only the base conditions on A1 and there is
no condition b ∈ B associated with an attribute not
occurring in a condition in Curr.

4.2 Cost of the algorithm

In this section, the temporal cost of the EXPREX algo-
rithm is analyzed. Let Do and Di be the outlier and
the inlier dataset, respectively, both defined on the set
of attributes A. Let d be the size of A and let n (m, resp.)
be the total number of outliers (inliers, resp.), namely
n = |Do| and m = |Di|.

Consider the GenerateBaseConditions function. Given
an attribute a, the cost of computing the set of base
conditions for a is O(n+m), if a is a categorical attribute.
Conversely, if a is a numeric attribute, the cost required
by this function is O(n2 +m logm). Indeed, the function
first sorts the sets Do[a] and Di[a], an operation requiring
time O(n logn+m logm). The outer cycle (lines 12–22) of
EXPREX is performed at most |Do| times, since, at each
iteration, l assumes a different value in Do[a]. The inner

cycle (lines 14–20) is also performed at most |Do| times,
since, at each iteration, u′ assumes a different value in
Do[a]. As for the other operations, they all require O(1)
time, since the array Out and V are sorted.

Consider, now, the CombineBaseConditions function.
Assume that, for each attribute a, there are at most h
base conditions. Essentially, this function evaluates the
exceptionality score for each set C of conditions which
can be generated from the overall set of base conditions.
Let c(τ) denote the cost of evaluating the exceptionality
score for a given condition. Since, for each attribute a,
at most one of the h base conditions defined on a can
occur in C, the number of sets of base conditions is
(h+1)d−1, where d is the number of attributes. Thus, the
CombineBaseConditions function costs O((h+1)d−1 · c(τ)).
Therefore, the overall cost of the EXPREX algorithm is
O(d · (h+ 1)d−1 · c(τ)).

Before concluding, it must be noticed that this is a
worst case cost and that, in practice, the number of
exceptionality score evaluations is much smaller due to
the strategy adopted to explore the search space.

5 EXPERIMENTS

In this section, we present experiments conducted by
using the EXPREX algorithm. The experiments are de-
signed as follows. First, we consider some real datasets,
including both numerical and categorical domains, in
order to assess the capability of the approach in mining
interesting knowledge (Section 5.1). Then, we compare
our technique with the outlying property discovery
technique described in [1], in order to point out differ-
ences and to show that the approach we present here
is more powerful in characterizing groups of outliers
(Section 5.2). Finally, we discuss results obtained on
the longevous individual characterization scenario al-
ready described in the Introduction (Section 5.3). If not
otherwise stated, we ran the EXPREX algorithm with
signficance level α = 0.05.

5.1 Experiments on real data
In order to show the behavior of the algorithm, we
first considered four real datasets from the UCI Machine
Learning Repository, that are Abalone, Ecoli, Parkinsons,
and SPECT Heart [35]. In the following, for some of the
top (i.e. those scoring the largest value of exceptional-
ity score) explanation-property pairs 〈E∗, p∗〉 discovered
by the algorithm, we will compare the distribution of
Do

E∗ [p∗] and Di
E∗ [p∗] with that of Do[p∗] and Di[p∗], in

order to make the quality of the separation between
outliers and inliers thus obtained intelligible.

Abalone. The Abalone dataset contains information about
a population of abalones (haliotis) of the Tasmania.
There are seven numerical attributes, that are length
(mm), diameter (mm), height (mm), whole weight (grams),
shucked weight (grams), viscera weight (grams), shell weight
(grams). The ranges of these attributes are scaled by
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Fig. 2: Experimental results on real-life data.

dividing the values by 200. We selected as the outlier
dataset Do

ab, the thirty-six abalones having more than 20
rings on the shell (this number basically provides the
animal age in years, that can be obtained by adding to
it the constant 1.5) while the 4,141 remaining ones form
the inlier dataset Di

ab.
Figure 2d shows the top explanation-property pair of

this data set. In particular, the outlying property pab
is shucked weight, that is the weight of abalone meat,
and the explanation Eab includes the single condition
shell weight ∈ [0.360, 0.585], that is the weight after
drying the abalone. This pair has exceptionality score
τ = 2.48, while the condition Eab selects 19 (53%) outliers
and 668 inliers (16%). Figure 2a shows the distribution of
the attribute shucked weight in the whole populations of
inliers and outliers. Without considering the explanation
Eab (that is to say, if E is empty), the attribute shucked
weight has exceptionality score τ = 0.88.

It is clear indeed that, while the distribution of shucked
weight in the two sub-populations has some common-
alities (Figure 2a), if the attention is restricted to the
instances satisfying condition Eab then the two distribu-
tions are markedly different (Figure 2d). Intuitively, the
knowledge mined can be summarized as follows: among
the abalones having medium/high weighted shells, the
older ones are characterized by having less meat.

Ecoli. The Ecoli dataset contains information concerning

the Escherichia coli bacterium, which is a gram-negative
bacterium commonly found in the lower intestine of en-
dothermic organisms. There are seven numeric attributes
here, namely mcg, gvh, lip, chg, aac, alm1, and alm2 (refer
to [35] for details). The class attribute represents the
localization site and we selected as the outlier dataset
Do

ec the twenty-five lying in the outer membrane (om and
omL classes) while the 311 remaining ones form the inlier
dataset Di

ec (with location in the cytoplasm, perisplasm,
and inner membrane).

Figure 2e shows the top explanation-property pair
for this data set. In particular, the outlying property
pec is alm2 (score of ALOM program after excluding
putative cleavable signal regions from the sequence)
and the explanation Eec includes the two conditions
acc ∈ [0.515, 0.870] (score of discriminant analysis of the
amino acid content of outer membrane and periplasmic
proteins) and alm1 ∈ [0.385, 1.000] (score of the ALOM
membrane spanning region prediction program). The
pair 〈Eec, pec〉 has exceptionality score τ = 6.31, while
the condition Eec selects 19 outliers (76%) and 91 inliers
(29%).

Figure 2b shows the distribution of the attribute alm2
in the whole populations of inliers and outliers. Without
considering the explanation Eec the attribute alm2 has ex-
ceptionality score τ = 4.10. In this case, the explanation-
property pair we found is able to single out two almost
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well-separated distributions.

Parkinsons. The Parkinsons dataset contains twenty two
biomedical voice measures from 31 people, 23 with
Parkinson’s disease. Each attribute records a particular
voice measure, and each instance corresponds to one of
195 voice recordings from these individuals. The class
attribute represents the health status, and we selected as
the outlier dataset Do

pk the 48 voice recordings of healthy
persons, while the 147 remaining ones form the inlier
dataset Di

pk.
Figure 2f shows the top explanation-property pair for

this data set. In particular, the outlying property ppk is
spread1 (a nonlinear measure of fundamental frequency
variation) and the explanation Epk only includes the
condition MDVP:Fhi ∈ [207.6, 592.0] (maximum vocal
fundamental frequency in Hertz). The pair 〈Epk, ppk〉 has
exceptionality score τ = 10.13, while the condition Epk

selects 32 outliers (67%) and 37 inliers (25%).
Figure 2c shows the distribution of the attribute

spread1 in the whole populations of inliers and out-
liers. Without considering the explanation, the attribute
spread1 has exceptionality score τ = 5.83. Also in this
case, the selected explanation-property pair is able to
single out two almost well-separated distributions.

SPECT Heart. The SPECT dataset contains information
about diagnosis from cardiac Single Proton Emission
Computed Tomography (SPECT) images. The dataset
consists in 172 inliers and 15 outliers. The input SPECT
images were processed and summarized in the dataset
as 22 binary attributes, numbered from F1 to F22. Next,
we comment on some outstanding explanation-property
pairs. Remarkably, the properties F13 and F22 have
exceptionality score 1.0 with empty explanation. The
following tables show the distribution of the values
associated with these two attributes.

Do Di

0 13 70
1 2 102
Property F13.

Do Di

0 14 89
1 1 83
Property F22.

Another top explanation-property pair reported by
EXPREX is the attribute F9 with explanation E = {F4 =
0, F6 = 0, F10 = 0}. The distribution of the attribute F9

with empty explanation is approximatively the same for
both the inlier sub-population and the outlier one. In
fact, about 63% of the inliers and 66% of the outliers
assume value 0 on the attribute F9, as reported in the
following table.

Do Di

0 10 109
1 5 63
F9 without
explanation.

Do Di

0 8 54
1 3 1

F9 with
explanation.

The value of the exceptionality score for the property
F9 without explanation is τ = 0.191, which is much
lower than the significativity threshold α = 0.95. The

explanation E selects 73% of the outliers (11 objects)
and the 32% of inliers (55 objects). It must be noted
that the distribution of the attribute F9 on the selected
individuals is substantially different. In fact, above 98%
of inliers (54 objects) and about 72% of outliers (8 objects)
assume value 0 on the attribute F9. Also in this case, the
value of the exceptionality is τ = 1.0, which is larger
than the significativity threshold α = 0.95.

5.2 Comparison with outlying property discovery

In this section we compare the EXPREX algorithm
with the outlying property discovery technique (OPD, for
short) presented in [1]. The OPD works only on datasets
consisting of categorical attributes. We thus compared
the two techniques on the SPECT Heart dataset which
has been illustrated in the previous section.

We recall that the ODP technique takes in input the
inlier dataset and one single outlier object o, and returns
a set of outlying explanation-property pairs (E,S), where
both E and S are set of attributes. In particular, the set E
is the analogous of the concept of explanation E adopted
here, in that it implicitly defines the condition E = {a =
o[a] : a ∈ E} aimed at singling out a portion of the inliers,
while S plays the role of our property p, in that it consists
of attributes on which the outlier object o assumes values
to be considered exceptional within the sub-population
identified by the condition E. Since the algorithm of [1]
takes as input just one abnormal individual, we ran the
OPD solving algorithm separately on each outlier and
collected the set T consisting of the ten top ranked pairs
returned by OPD on each outlier. Then, we analysed the
explanation-property pairs in the set T by computing the
exceptionality score τ introduced here on these pairs, in
order to study how they behave in characterizing the
whole outlier sub-population.

We executed the OPD algorithm with explanation
threshold σ = 0.3 (denoting that at least 30% of the
inliers have to satisfy the explanation). The top ranked
explanation-property pairs returned by the ODP solving
algorithm are shown in Table 1. Each row of the table
is associated with one of the fifteen outlier objects and
reports the pair scoring the largest outlierness value. It
must be noticed that by virtue of the implied projection,
in the outlier sub-population there are seven identical
objects. These objects are identified in the table by means
of a star located next to the object identifier. Clearly,
the explanation-property pairs associated with all these
objects are the same. Consider now the top ranked pair
associated with the seven identical outliers. We note that
its exceptionality score is far above the exceptionality
threshold θ = 0.95 (corresponding to significance level
α = 0.05 for categorical attributes) and, moreover, that
this pair scores the largest value of exceptionality score
τ associated with the top pairs reported by the OPD
algorithm. The good behavior of this pair as far as
the exceptionality score is concerned can be justified by
noticing that it has been induced several times by the
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ID Property, p Explanation, E |Do
E |% τ

1∗ F13 (F19 = 0), (F16 = 0), (F20 = 0), (F1 = 0) 0.60 (9) 0.9988
2 F4 (F18 = 0), (F17 = 0), (F15 = 0), (F19 = 0), (F7 = 0), (F16 = 0) 0.67 (10) 0.3768
3∗ F13 (F19 = 0), (F16 = 0), (F20 = 0), (F1 = 0) 0.60 (9) 0.9988
4 F19 (F18 = 0), (F17 = 0), (F15 = 0), (F6 = 0), (F10 = 0) 0.80 (12) 0.6538
5 F9 (F18 = 0), (F17 = 0), (F11 = 0), (F15 = 0), (F4 = 0), (F20 = 0) 0.73 (11) 0.9540
6∗ F13 (F19 = 0), (F16 = 0), (F20 = 0), (F1 = 0) 0.60 (9) 0.9988
7∗ F13 (F19 = 0), (F16 = 0), (F20 = 0), (F1 = 0) 0.60 (9) 0.9988
8∗ F13 (F19 = 0), (F16 = 0), (F20 = 0), (F1 = 0) 0.60 (9) 0.9988
9 F19 (F18 = 0), (F17 = 0), (F15 = 0), (F1 = 0) 0.80 (12) 0.8708
10 F9 (F18 = 0), (F17 = 0), (F15 = 0), (F19 = 0), (F6 = 0), (F14 = 0) 0.53 (8) 0.0000
11∗ F13 (F19 = 0), (F16 = 0), (F20 = 0), (F1 = 0) 0.60 (9) 0.9988
12∗ F13 (F19 = 0), (F16 = 0), (F20 = 0), (F1 = 0) 0.60 (9) 0.9988
13 F12 (F18 = 0), (F7 = 0), (F21 = 0), (F3 = 0) 0.73 (11) 0.6692
14 F15 (F18 = 0), (F17 = 0), (F19 = 0), (F9 = 0) 0.60 (9) 0.8782
15 F9 (F18 = 0), (F17 = 0), (F15 = 0), (F4 = 0), (F10 = 0) 0.67 (10) 0.9834

TABLE 1: Top ranked explanation-property pairs induced by the technique introduced in [1].

OPD technique, each time on one of the seven identical
outlier objects (about 50% of the outliers). Thus, it can
be said that this pair characterizes a large portion of
the outliers, which is precisely the task we pursue here.
Nonetheless, it has been shown in the previous section
that the property F13 has exceptionality score 1.0 with
empty explanation, hence slightly greater than the score
associated with the above discussed pair. Thus, although
this pair is significant, it can be just considered, loosely
speaking, sub-optimal for our task. As for the top ranked
rule associated with the other outliers, we note that in
some cases the value of exceptionality score τ is larger
than the exceptionality threshold θ = 0.95 (see outliers
with ID 5 and 15), while in all the other cases (see outliers
with ID 2, 4, 9, 10, 13, and 14) the value of τ is lower
than θ and, sometimes, very small.

From the previous analysis, it is clear that there is
no guarantee on the value of the exceptionality score
associated with pairs returned by the OPD technique.
This can be explained by noting that the OPD technique
is interested in maximizing the outlierness score, which
depends only on the value assumed by the outlier object
and does not take into account the values characterizing
the other outliers. Also, attempting to combine (accord-
ing to some strategy which should be properly defined)
the pairs induced by the OPD technique on different
outliers, would certainly result in a weaker approach
than the one we present here. For example, just notice
that in this experiment, no top outlying explanation-
property pair is shared by different outliers and, hence,
taking the intersection of the top pairs would result
in an empty set. Thus, it can be concluded that the
pairs returned by [1] are not suitable for characterizing
an outlier sub-population. More importantly, it must
be noticed that there are outstanding exceptional pairs
that the OPD technique is not able to induce. As a
notable example, consider the property F22 with empty
explanation discussed in the previous section. This prop-
erty has not been reported among the outlying pairs.
In order to understand why OPD fails in recognizing
such an exceptional property, observe the distribution of
the values of the attribute F22 reported in the previous

section. Within the inlier sub-population, the values 0
and 1 exhibit about the same frequency, that is about
fifty percent. In this case, it is clear that if each outlier
is taken into account separately, there is no way for
them to show an exceptional value (that is, either 0
or 1) on the attribute F22. On the contrary, by taking
into account the whole outlier sub-population, it appears
that the distribution of the attribute F22 is unexpectedly
unbalanced.

5.3 Longevous individual characterization
The dataset Longevous, already discussed in the Intro-
duction, consists of genotype information taken from
the DNA of 972 unrelated subjects of various ages,
ranging from 18 to 106 years. All the subjects were
sampled from a genetically homogeneous population
(Calabria, Southern Italy). Data were collected through
a recruitment campaign. In particular, the subjects over
80 years old were identified through the birth registers
of the municipalities of Calabria. The individuals aged
from 18 to 60 years were sampled from the students and
the staff of the University of Calabria. Finally, the indi-
viduals from 60 to 80 years were recruited among people
visiting thermal baths in the area and the Academy
of the Elderly. For each individual, the dataset stores
information concerning ten polymorphic genetic loci. A
genetic locus is the position of a gene or of any other
significant sequence in a chromosome. A genetic locus is
composed by a sequence of nucleotides, and each variant
of this sequence is called allele. If there is more than
one allele with frequency larger than 1% for a locus
in a population, then the locus is called polymorphic.
The polymorphic genetic loci considered in the dataset
are: “APOA1”, “APOA4”, “APOB”, “APOE”, “HSP70-
1”, “HSP90α”, “HSP90β”, “SIRT3”, “TH” and “mtDNA”
due to their functional effects which are documented to
be related to longevity (see [4] and the related literature
cited therein). Summarizing, the dataset consists in 972
individuals and 10 binary attributes. The attribute values
have been determined by the biologists on the basis of
biological considerations about dominant alleles. Specif-
ically, for each genetic locus, the value 1 is assigned to
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a particular genotype, called relevant genotype, while the
value 0 to the remaining ones. Moreover, according to
the age ranges, the inlier dataset is composed of 875
subjects (individuals at most 100 years old), while the
outlier dataset of 97 outliers (individuals more than 100
years old).

As (partially) discussed in the Introduction, the algo-
rithm singled out the following exceptional pairs:
(i) p = APOE and E = {SEX = “F”}, with exceptional-

ity score τ = 0.995;
(ii) p = HSP90-β and E = {SEX = “F”}, with excep-

tionality score τ = 0.972;
(iii) p = APOE and E = {SEX = “M”}, with exception-

ality score τ = 0.970;
(iv) p = SIRT3 and E = {SEX = “M”}, with exception-

ality score τ = 0.995;
(v) p = APOA1 and E = {SEX = “M”}, with exception-

ality score τ = 0.992;
which agree with the results of the biological study
presented in [4]. Other than the above shown exceptional
pairs, EXPREX also mined other pairs which show a
clear influence on the longevity. We discuss some of them
in the following.

The property p = APOA4 with explanation E =
{APOB = 0,APOE = 0,HSP90-β = 1} has exceptionality
score τ = 0.971 and involves 34 outliers and 300 inliers.
The distributions of the property APOA4 with empty
explanation and with the explanation E mined by the
algorithm are reported in the following tables:

Do Di

0 64 612
1 33 263
“APOA4” without

explanation.

Do Di

0 18 210
1 16 90
“APOA4” with

explanation.

It is clear that if no explanation is considered, the
property APOA4 is not exceptional. Indeed, since the
two distributions are almost identical (the percentage
of subjects assuming value 1 on the attribute APOA4
is about 30% for both outliers and inliers), the score τ
is equal to 0.5686, thus far below the threshold 0.95.
Conversely, by considering the sub-population selected
by the explanation E, the inliers assuming value 1 on
APOA4 are the 30%, while the percentage of outliers
assuming value 1 increases to about 50%. This property
is very interesting. Indeed, while the distribution of the
APOA4 attribute is highly unbalanced in the inlier sub-
populations, since the majority of the inliers assume
value “0” on APOA4, the distribution on the outlier sub-
population is quite uniform.

Another interesting pair returned by EXPREX con-
sists of the property p = TH with explanation E =
{SIRT3 = 0,mtDNA = 0,HSP90-β = 1}, having ex-
ceptionality score τ = 0.956 and involving 30 outliers
and 298 inliers. The distributions of the property with
empty explanation and with the explanation mined by
EXPREX are reported in the following tables:

Do Di

0 75 665
1 22 210
“TH” without
explanation.

Do Di

0 29 248
1 1 50

“TH” with
explanation.

Consider the property TH without explanation. The
number of outliers assuming value 0 is 23% and the
number of inliers assuming value 0 is 24%. Then, TH
is similarly distributed on the inliers and on the outliers
and, consequently, the score τ is equal to 0.1848, a rather
small value. Conversely, by focusing on the individuals
selected by the explanation, the number of inliers slightly
decreases to 16%, while the number of outliers drasti-
cally decreases to 3%.

It is worth noting that, while for the human analyst it
is in general impractical to single out all the relevant
property/explanations, due to the enormous size of
the search space (consisting of all potential property-
explanation pairs), the EXPREX algorithm was able
to automatically detect exceptional pairs, and, thus, to
reveal knowledge hidden in the data. As an example,
the two above discussed pairs have no counterpart in
the analysis reported in [4]. The pairs singled out by
EXPREX showed a clear significant effect on character-
izing longevous individuals, suggesting a direction for
a more in-depth analysis to be conducted on the genetic
side by biologists.

6 CONCLUSIONS

This work aimed at providing a contribution towards
the design of automatic methods for the discovery of
properties characterizing a small group of outlier indi-
viduals as opposed to the whole population of “normal”
individuals. In particular, we have introduced the con-
cept of exceptional explanation-property pair and have
discussed the significance of the associated knowledge.
The innovativeness of the approach has been illustrated
by highlighting the substantial differences with related
techniques. Moreover, we have defined the concept of
exceptionality score, which measures the badness of fit
of the values assumed by the outliers with respect to
the probability distribution associated with the values
assumed by the inliers. Suitable exceptionality scores
have been introduced for both numeric and categorical
attributes. These scores have been shown, from both
the analytical and the empirical point of view, to be
effective for small samples, as outlier sets usually are.
Thus, our method has been explicitly conceived to deal
with rare sub-populations. This fact represents a pecu-
liarity of the method as opposed to related approaches
found in the literature. We have designed an algorithm,
called EXPREX, which efficiently discovers exceptional
explanation-property pairs. Finally, we have shown that
our technique is able to provide knowledge character-
izing in a natural manner outlier groups, as confirmed
by the experimental campaign we have reported in the
paper.
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