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Fast Nearest Neighbor Condensation
for Large Data Sets Classification

Fabrizio Angiulli

Abstract—This work has two main objectives, namely, to introduce a novel algorithm, called the Fast Condensed Nearest Neighbor
(FCNN) rule, for computing a training set consistent subset for the nearest neighbor decision rule, and to show that condensation
algorithms for the nearest neighbor rule can be applied to huge collections of data. The FCNN rule has some interesting properties: it
is order independent, its worst case time complexity is quadratic but often with a small constant pre-factor, and it is likely to select points
very close to the decision boundary. Furthermore, its structure allows for the triangle inequality to be effectively exploited to reduce the
computational effort. The FCNN rule outperformed even here enhanced variants of existing competence preservation methods both
in terms of learning speed and learning scaling behavior, and often in terms of the size of the model, while it guaranteed the same
prediction accuracy. Furthermore, it was three order of magnitude faster than hybrid instance-based learning algorithms on the MNIST
and MIT Face databases and computed a model of accuracy comparable to that of methods incorporating a noise filtering pass.

Index Terms—Classification, large and high-dimensional data, nearest neighbor rule, prototype selection algorithms, training-set
consistent subset.

✦

1 INTRODUCTION

The nearest neighbor decision rule [10] (NN rule for
short) assigns to an unclassified sample point the classi-
fication of the nearest of a set of previously classified
points. For this decision rule, no explicit knowledge
of the underlying distributions of the data is needed.
A strong point of the nearest neighbor rule is that,
for all distributions, its probability of error is bounded
above by twice the Bayes probability of error [10], [27],
[16]. That is, it may be said that half the classification
information in an infinite size sample set is contained in
the nearest neighbor.
Naive implementation of the NN rule requires storage

of all the previously classified data, and then comparison
of each sample point to be classified to each stored point.
In order to reduce both space and time requirements,
several techniques to reduce the size of the stored data
for the NN rule have been proposed (see [32] and [28] for
a survey) referred to as training set reduction, training
set condensation, reference set thinning, and prototype
selection algorithms. In particular, among these tech-
niques, training set consistent ones, aim at selecting a
subset of the training set that classifies the remaining
data correctly through the NN rule.
Using a training set consistent subset, instead of the

entire training set, to implement the NN rule, has the
additional advantage that it may guarantee better clas-
sification accuracy. Indeed, [22] showed that the VC
dimension of an NN classifier is given by the number
of reference points in the training set. Thus, in order to
achieve a classification rule with controlled generaliza-
tion, it is better to replace the training set with a small
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consistent subset. Unfortunately, computing a minimum
cardinality training set consistent subset for the NN rule
turns out to be intractable [30].
Several training set consistent condensation algo-

rithms have been introduced in the literature. We point
out that, among the criteria characterizing condensation
methods, learning speed is usually neglected. However,
in order to manage huge amounts of data, methods
exhibiting good scaling behavior are definitively needed.
This work introduces a novel order independent algo-
rithm for finding a training set consistent subset for
the NN rule, called the FCNN (Fast Condensed Nearest
Neighbor) rule, shows that it is scalable on large multi-
dimensional training sets, and compares it with existing
condensation methods.
The rest of the paper is organized as follows. In Section

2, previous approaches are described and compared to
the approach here proposed and the contribution of
this work is illustrated. In Section 3, the FCNN rule is
described and its main properties are stated. In Section
4, experimental results are presented together with a
thorough comparison with existing methods. Finally, in
Section 5, strengths and weaknesses of the different
condensation methods are discussed and conclusions are
drawn.

2 RELATED WORKS AND CONTRIBUTION

Starting from the seminal work of [21], several training
set condensation algorithms have been introduced in
the literature, also known as instance-based [2], lazy [1],
memory-based [26], and case-based learners [29]. These
methods can be grouped into three main categories
depending on the objectives that they want to achieve
[8], i.e. competence preservation, competence enhancement,
and hybrid approaches.
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The goal of competence preservation methods is to
compute a training set consistent subset removing su-
perfluous instances that will not affect the classification
accuracy of the training set. Competence enhancement
methods aim at removing noisy instances in order to in-
crease classifier accuracy. Finally, hybrid methods search
for a small subset of the training set that, simultaneously,
achieves both noisy and superfluous instances elimina-
tion.
Competence enhancement and preservation methods

can be combined in order to achieve the same objectives
as hybrid methods. However, while goals of enhance-
ment and preservation methods are clearly separated,
i.e. smoothing the decision boundary in the former case
and computing a possibly small training set consistent
subset in the latter, often it is not clear how subsets
computed by hybrid methods can be related to the sets
computed by the two other methods. Thus, searching for
a small training set consistent subset is a relevant task
per se, improving both classification speed and classifier
accuracy [22], and computationally hard [30].
Next, we first describe training set consistent subset

methods for the NN rule and some other related work,
and then point out the contributions of this work. A
detailed survey of condensation methods can be found
in [32] and [28].

2.0.1 Condensed Nearest Neighbor rule

The concept of a training set consistent subset was
introduced by P.E. Hart [21] together with an algorithm,
called the CNN rule (for Condensed NN rule), to deter-
mine a consistent subset of the original sample set.
The algorithm uses two bins, called S and T . Initially,

the first sample of the training set is placed in S, while
the remaining samples of the training set are placed in
T . Then, one pass through T is performed. During the
scan, whenever a point of T is misclassified using the
content of S, it is transferred from T to S. The algo-
rithm terminates when no point is transferred during a
complete pass of T .
The motivation for this heuristic is that misclassified

data lies close to the decision boundary. Nevertheless,
the CNN rule may select points far from the decision
boundary. Furthermore, the CNN is order dependent,
that is it has the undesirable property that the consis-
tent subset depends on the order in which the data
is processed. Thus, multiple runs of the method over
randomly permuted versions of the original training set
should be executed in order to settle the quality of its
output [3].

2.0.2 Modified Condensed Nearest Neighbor rule

The MCNN rule (for Modified CNN rule) [14] computes
a training set consistent subset in an incremental manner.
The consistent subset S is initially set to the empty

set. During each main iteration of the algorithm, first
the points St of the training set T misclassified by using

S are selected. Then, the set of centroids1 C of the
points in St are computed and used to classify St. St is
thus partitioned into two sets, Sr and Ss of points that
are correctly classified and misclassified, respectively, by
using the centroids C. If set Ss is empty, then the set S
is augmented with the set C, otherwise St is set to Sr

and the process is repeated until Ss becomes empty. The
algorithm terminates when there are no misclassified
points of T by using S.
Differently from the CNN rule, the MCNN rule is

order independent, that is, it always returns the same
consistent subset independently of the order in which
the data is processed. As claimed by the authors of
the algorithm, the MCNN rule may work well for data
with a gaussian distribution or that can be split up into
regions with a gaussian distribution, but, in general, it is
unlikely to select points close to the decision boundary.
Also, during each iteration of the MCNN rule, at most
m points can be added to the subset S, where m is the
number of classes in T , thus the method might require
a lot of iterations to converge.

2.0.3 Structural Risk Minimization Nearest Neighbor
rule
In order to compute a small consistent subset S of the
training set T , [22] proposed the following algorithm
(NNSRM for Structural Risk Minimization using the NN
rule).
Assume that the training set T contains only two class

labels.2. First, all pairwise distances among points having
different class labels are computed. Let {xi, yi} denote
the pair having the ith smallest distance, i ≥ 1. The
set S is initialized to {x1, y1}, i.e. to the closest points
x1 and y1 from the two classes, and a counter k is
initialized to 2. Next, until set S misclassifies at least a
point in T , the following steps are performed: if {xk, yk}
is not contained in S, then S is augmented with both
xk and yk; in any case, k is set to k + 1. That is, the
algorithm performs one pass on the pairs of points from
the two classes ordered in increasing distance and until
the initially empty set S misclassifies the training set T ,
whenever a pair is not contained in S it is added to S.
The intuition underlying the method is that since the

nearest pairs of points from the opposite classes lie in the
regions where the domains of the two classes are closest,
i.e. where most classification errors occur, they must be
considered first. However, the method is costly. Indeed,
the complexity of the NNSRM algorithm is O(|T |3).
Furthermore, we note that the size of the condensed set
computed is sensitive to the pairs having the greatest
distances. Indeed, assume that two points from opposite

1. Given a set S of points having the same class label, the centroid c
of S is the point c of S which is closest to the geometrical center of S.
The set of centroids C of a set of points S = S1 ∪ . . .∪Sn, where each
Si (1 ≤ i ≤ n) is a maximal subset of points of S having the same
class label, is the set C = {c1, . . . , cn}, where ci is the centroid of Si

(1 ≤ i ≤ n).
2. They provided also a similar algorithm working on data with

more than two class labels.
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classes in the training set are far from the other training
set points, and such that their distance is greater than
the distance from any other pair of the remaining points
from the opposite classes. Then, a training set consistent
subset must contain these two points and, hence, all the
training set points.

2.0.4 Reduced Nearest Neighbor rule

The RNN rule [20], for Reduced NN rule, is a post-
processing step that can be applied to any other com-
petence preservation method. It works as follows. First,
subset S is set equal to training set T or to a training set
consistent subset of T . Then, points of S whose deletion
from S does not leave any point of T misclassified are
eliminated from S. Experiments have shown that this
rule yields a slightly smaller subset than the CNN rule,
but it is costly.

2.0.5 Minimum cardinality methods

Methods previously discussed compute a training set
consistent subset in an incremental or decremental man-
ner and have polynomial execution time requirements.
Next, competence preservation methods whose aim is to
compute a minimum cardinality training set consistent
subset (an NP-hard task, see [30]) are briefly described.
The SNN rule [25], for Selective NN rule, computes the

smallest training set consistent subset S of T having the
following additional property: each point of T is closer
to a point of S of the same class than to any point of T
of a different class. This set is also called selective subset.
This algorithm runs in exponential time (the problem
of computing the minimum cardinality selective subset
has been proved to be NP-hard [30]) and, hence, it is not
suitable on large training sets.
The MCS rule [12], for Minimal Consistent Subset,

aims at computing a minimum cardinality training set
consistent subset. The algorithm, based on the compu-
tation of the so-called nearest unlike neighbors [13], is
quite complex. Furthermore, counterexamples have been
found to the conjecture that it computes a minimum
cardinality subset.
Approximate optimization methods, such as tabu

search, gradient descent, evolutionary learning, and oth-
ers, have been used to compute subsets close to the mini-
mum cardinality one. These algorithms can be applied in
a reasonable amount of time only to a small- or medium-
sized data set. [24] provides a comparison of a number
of these techniques.

2.0.6 Other approaches

Finally, we mention the literature less related to the
competence preservation task, but involving comple-
mentary or alternative approaches, concerning decision
boundary consistent subset methods [7], which compute a
subset of the original training set preserving the decision
boundary, condensing and editing techniques through
the use of proximity graphs [28], nearest neighbor search

CNN rule (170 points) MCNN rule (199 points)

NNSRM rule (495 points) FCNN rule (140 points)

Fig. 1. Example of training set consistent subsets com-
puted by the CNN, MCNN, NNSRM, and FCNN rules.

techniques [11], [19], which can alleviate the cost of
searching for the nearest neighbor of a query point at
classification time, and competence enhancement and hybrid
methods [32], introduced early in this section.
If the training set is clean, then using a consistent

method is very appropriate. In the presence of noise, if
the accuracy of the consistent methods is not adequate,
they can be combined with competence enhancement
methods (e.g., Wilson editing or multi-edit [31], [15]).
Alternatively, accuracy may be improved by using the
k nearest neighbor rule [18], [17], the generalization
of the nearest neighbor rule in which a new object is
assigned to the class with the most members present
among its k nearest neighbors in the training set. Indeed,
the probability of error of the k nearest neighbor rule
asymptotically approaches the Bayes error. Accuracy
of condensed nearest neighbor classifiers can be also
enhanced by combining multiple classifiers, as done in
[3], where it is proposed to train multiple condensed
nearest neighbor classifiers on smaller training sets and
to take a vote over them, or in [5], [6], where the
MFS algorithm is described, combining multiple nearest
neighbor classifiers, each using only a random subset of
the features.

2.1 Contribution

This work introduces a novel algorithm for the compu-
tation of a training set consistent subset for the nearest
neighbor rule3. The algorithm, called Fast CNN rule
(FCNN for short), works as follows.
First, the consistent subset S is initialized to the cen-

troids of the classes contained in the training set T . Then,

3. A preliminary version of this work appeared in [4].
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during each iteration of the algorithm, for each point p
in S, a point q of T belonging to the Voronoi cell of p,4

but having a different class label, is selected and added
to S. The algorithm stops when no further point can be
added to S, i.e. when T is correctly classified using S.
Despite being quite simple, the FCNN rule has some

desirable properties. Indeed, it is order independent, its
worst case time complexity scales as the product of the
cardinality of the training set and of the condensed set,
requires few iterations to converge, and it is likely to
select points very close to the decision boundary.
For example, Figure 1 compares the consistent subsets

computed by the CNN, MCNN, NNSRM, and FCNN
rules on a training set composed of 9,000 points uni-
formly distributed into the unit square and partitioned
into two classes by a circle of diameter 0.5.
As already noted elsewhere [32], training set reduction

algorithms can be characterized by their storage reduc-
tion, classification speed increase, generalization accu-
racy, noise tolerance, and learning speed. Among these
criteria, the learning speed one is usually neglected.
However, in order to be practicable on large training
sets or in knowledge discovery applications requiring
a learning step in their cycle, the method should exhibit
good learning behavior.
The contribution of this work can be summarized as

follows:

• A novel order independent algorithm, called FCNN
rule, for the computation of a training set consistent
subset for the nearest neighbor rule is presented.

• It is proved that the worst case time complexity of
the FCNN is quadratic with an often small constant
pre-factor that corresponds to the reduction ratio.
Furthermore, an implementation cleverly exploiting
the triangle inequality and sensibly reducing this
pre-factor is described.

• It is shown that the FCNN method scales well on
large-sized multidimensional data sets.

• The FCNN rule is compared with both standard and
here enhanced implementations of existing com-
petence preservation algorithms, showing that it
outperforms the other methods in terms of learning
speed and learning scaling behavior, and often in
terms of size of the model.

• The FCNN rule is compared with hybrid instance-
based learning algorithms on the MNIST and MIT
Face databases showing that it is at least three order
of magnitude faster while guarantees a comparable
accuracy.

• An extension of the basic rule taking into account
the k nearest neighbors is presented, and it is shown
that the computed subset has the same accuracy of
hybrid methods incorporating a noise filtering step.

In its entirety, this is the first work providing near-
est neighbor condensation algorithms which have been

4. The Voronoi cell of point p ∈ S is the set of all points that are
closer to p than to any other point in S.

Algorithm FCNN rule
Input: A training set T ;
Output: A training set consistent subset S of T ;
Method:
S = ∅;
∆S = Centroids(T );
while (∆S 6= ∅) {
S = S ∪∆S;
∆S = ∅;
for each (p ∈ S)
∆S = ∆S ∪ {rep(p,Voren(p, S, T ))};

}
return(S);

Fig. 2. The FCNN rule.

shown experimentally to be scalable on large multidi-
mensional data sets.

3 THE FCNN RULE

We start by giving some preliminary definitions.
In the following we denote by T a labelled training

set from a metric space with distance metrics d.
Let p be an element of T . We denote by nn(p, T ) the

nearest neighbor of p in T according to the distance d. If
p ∈ T , then p itself is its first nearest neighbor. We denote
by l(p) the label associated with p.
Given a point q, the NN rule NN(q, T ) assigns to q the

label of the nearest neighbor of q in T , i.e. NN(q, T ) =
l(nn(q, T )).
A subset S of T is said to be a training set consistent

subset of T if, for each p ∈ (T − S), l(p) = NN(p, S).
Let S be a subset of T , and let p be an element of S. We

denote by Vor(p, S, T ) the set {q ∈ T | p = nn(q, S)}, that
is the set of the elements of T that are closer to p than
to any other element p′ of S. Furthermore, we denote
by Voren(p, S, T ) the set of the Voronoi enemies of p in T
w.r.t. S, defined as {q ∈ Vor(p, S, T ) | l(q) 6= l(p)}.
We denote by Centroids(T ) the set containing the

centroids of each class label in T .
The following Theorem states the property exploited

by the FCNN rule in order to compute a training set
consistent subset.
Theorem 3.1: S is a training set consistent subset of T

for the NN rule iff for each element p of S, Voren(p, S, T )
is empty.

Proof: (⇒) By contradiction, assume that there is an
element p of S such that Voren(p, S, T ) is not empty. Then
at least an element q of Voren(p, S, T ), and hence of T ,
is such that NN(q, S) = l(nn(q, S)) = l(p) 6= l(q), and S
is not training set consistent.
(⇐) First of all, note that (∪p∈SVor(p, S, T )) = T .

Thus, for each q ∈ T , there is p ∈ S such that q ∈
Vor(p, S, T ), and, being Voren(p, S, T ) empty, it holds that
l(nn(q, S)) = l(p) = l(q).

3.1 Algorithm

The algorithm FCNN rule is shown in Figure 2. It
initializes the consistent subset S with a seed element
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Iteration #1, subset size=2 Iteration #2, subset size=4 Iteration #3, subset size=8

Iteration #4, subset size=12 Iteration #5, subset size=20 Iteration #6, subset size=30

Iteration #7, subset size=40 Iteration #8, subset size=50 Iteration #9, subset size=54

Fig. 3. Example of execution of the FCNN1 rule.

from each class label of the training set T . In particular,
the seeds employed are the centroids of the classes in T .
The algorithm works in an incremental manner: dur-

ing each iteration the set S is augmented until the stop
condition, given by Theorem 3.1, is reached. For each
element of S, a representative element of Voren(p, S, T )
w.r.t. p, denoted as rep(p,Voren(p, S, T )) in Figure 2, is
selected and inserted into S.
Given p ∈ T and a subset X ⊆ T , the representative

rep(p,X) of X w.r.t. p can be defined in different ways.
We investigate the behavior of two different definitions
for rep(p,X). The first definition, we call FCNN1 the
variant of the FCNN rule using this definition, selects the
nearest neighbor of p in X , that is rep(p,X) = nn(p,X).
The second definition, we call FCNN2 the variant of the
FCNN rule using it, selects the class centroid in X closest
to p, that is rep(p,X) = nn(p, Centroids(X)).
If, during an iteration, no new element can be added

to S, then, by Theorem 3.1, S is a training set consistent
subset of T , and the algorithm terminates returning the
set S.
Figures 3 and 4 report an example of execution of the

FCNN1 and FCNN2 rules on the same data set. The
data set considered is composed of 2,000 points on the
plane. Half of the points belong to one of two concentric
spirals representing two distinct classes. In this case,
the FCNN1 rule performs nine iterations and returns a
subset composed of 54 points, while the FCNN2 rule
performs ten iterations and computes a subset composed
of 74 points. It is clear from these figures that the FCNN
rule requires few iterations to converge to a solution.
Indeed, the number of points contained in the subset
could double at the end of each iteration. This is due to
the fact that, for each point p such that Voren(p, S, T ) is
not empty, a new point is added to the set S.

Iteration #2, subset size=4 Iteration #3, subset size=8 Iteration #4, subset size=14

Iteration #5, subset size=24 Iteration #6, subset size=38 Iteration #7, subset size=54

Iteration #8, subset size=66 Iteration #9, subset size=72 Iteration #10, subset size=74

Fig. 4. Example of execution of the FCNN2 rule.

As discussed above, the FCNN1 and FCNN2 rules
build the set ∆S by selecting a representative of the
Voronoi enemies of all the points in the current subset S.
It is thus of interest to analyze the behavior of the FCNN
rule in the special case in which the set∆S is constrained
to be composed of one single point per iteration, i.e. in
the special case in which ∆S is built by selecting the
representative of the Voronoi enemies of only one of the
elements of S.
Such an element can be defined in different ways, but

a natural choice is to select the point p∗ of S such that
|Voren(p∗, S, T )| is maximum, that is, the point having
most Voronoi enemies. In the following, we will call the
FCNN3 rule the variant of the FCNN rule whose set ∆S
is built by selecting only point nn(p∗,Voren(p∗, S, T )),
and FCNN4 the variant whose set ∆S is built by select-
ing only point nn(p∗, Centroids(Voren(p∗, S, T )). Differ-
ently from the FCNN1 and FCNN2, both the FCNN3 and
FCNN4 initialize the set S by using only the centroid of
the most populated class.
The following theorem states the main properties of

the algorithm.
Theorem 3.2: The algorithm FCNN rule (i) terminates

in a finite time, (ii) computes a training set consistent
subset, and (iii) is order independent.
The proof of Theorem 3.2 is reported in the Appendix.

Figure 5 shows the implementation of the FCNN1 rule.
For the sake of clarity, the treatment of the ties described
in Theorem 3.2 is not reported in the figure.
The algorithm maintains in the array nearest, for each

training set point q, the closest point nearest[q] of q in
the set S, and in the array rep, for each point p in S, its
current representative rep[p] of the misclassified points
lying in the Voronoi cell of p.
During each iteration, the array nearest and rep must
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Algorithm FCNN1 rule
Input: A training set T ;
Output: A training set consistent subset S of T ;
Method:
for each (p ∈ T )
nearest[p] = undefined;

S = ∅;
∆S = Centroids(T );
while (∆S 6= ∅) {
S = S ∪∆S;
for each (p ∈ S)
rep[p] = undefined;

for each (q ∈ (T − S)) {
for each (p ∈ ∆S)
if (d(nearest[q], q) > d(p, q))
nearest[q] = p;

if ((l(q) 6= l(nearest[q])) &&
(d(nearest[q], q) < d(nearest[q], rep[nearest[q]])))
rep[nearest[q]] = q;

}
∆S = ∅;
for each (p ∈ S)
if (rep[p] is defined) ∆S = ∆S ∪ {rep[p]};

}
return(S);

Fig. 5. The FCNN1 rule.

be updated. Let ∆S be the set of points added to the
set S at the beginning of the current iteration. To update
the array nearest, it is sufficient to compare the training
set points in (T − S) with the points in the set ∆S, as
the nearest neighbors in S − ∆S of the points in (T −
(S − ∆S)) where computed in the previous iterations,
and are already stored in nearest.
After having computed the closest point nearest[q]

in ∆S, and hence in S, of a point q in (T − S), the
array rep can be updated efficiently as follows. If the
label of q is different from the label of nearest[q], then
q is misclassified. In this case, if the distance from
nearest[q] to q is less than the distance from nearest[q] to
its current associated representative rep[nearest[q]], then
rep[nearest[q]] is set to q.
The following theorem states an upper bound to the

complexity of the FCNN rule.
Theorem 3.3: The FCNN1 rule requires at most |T | · |S|

distance computations using O(|T |) space.
Proof: The algorithm shown in Figure 5 has space

complexity O(|T |), as it employs the two arrays nearest
and rep, having size |T | and |S| respectively, with |S| ≤
|T |.
Let Si−1 and ∆Si−1 denote, respectively, the values of

sets S and ∆S at the beginning of the ith iteration of the
algorithm of Figure 5, and let Si denote set Si−1∪∆Si−1.
In order to find the nearest neighbor among the points in
∆Si−1 of each training set point in (T−Si), the algorithm
computes (|T | − |Si|)|∆Si−1| distances.
Note that, in order to avoid repeated distance cal-

culations, the distances {d(q, nearest[q]) | q ∈ T } and
{d(p, rep[p]) | p ∈ S} can be maintained into two
additional arrays of floating point numbers having size

|T | and |S|, respectively, without additional asymptotic
space requirements.
Thus, the overall number of distances computed is |T |·∑
i |∆Si|−

∑
i |Si| · |∆Si−1| = |T | · |S|−

∑
i<j |∆Si| · |∆Sj |,

and, hence, |T | · |S| is an upper bound to the number of
distance computations required.
The FCNN2 has a very similar implementation. The only
difference lies in the update of the array rep. Indeed,
in order to determine the centroids of the misclassified
points of each Voronoi cell induced by the points in S,
the FCNN2 rule performs a supplemental training set
scan at the end of each main iteration. Hence, as for
the worst case time complexity of the FCNN2 rule, it
requires at most

∑
i[(|T | − |Si|)|∆Si−1| + (|T | − |Si|)] ≤

|T | · (|S| + t) ≤ 2|T | · |S| distance computations, where
t ≤ |S| is the number of iterations required to converge.
As we will see in the experimental results section, the
number t of iterations performed by the FCNN2 rule
is always small (up to 20-30 iterations, even when S is
composed of ten of thousands objects).

3.2 Exploiting the Triangle Inequality

In a metric space the FCNN rule can take advantage of
the triangle inequality in order to avoid the comparison
of each point in (T − S) with each point in ∆S.
To this aim, the grouping in Voronoi cells of the train-

ing set points is exploited. During the generic ith main it-
eration, for each p ∈ Si−1, the Voronoi cell Vor(p, Si−1, T )
is visited, and the points q ∈ (Vor(p, Si−1, T )− {p}) are
compared with the points in ∆Si−1. Before starting the
comparison, the distances among the point p and the
points in ∆Si−1 are computed, and the points in ∆Si−1

are sorted in order of increasing distance from p. Then,
instead of comparing each point q in Vor(p, Si−1, T ) with
each point in ∆Si−1, each q is compared with the points
in ∆Si−1 having a distance from p less than twice the
distance from q and p. Indeed, by the triangle inequality,
they are all and the only points of ∆Si−1 candidate to
be closer to q than p.
We note that the partitioning of points in the Voronoi

cells is induced by the array nearest. In order to retrieve
the points lying in the same Voronoi cell efficiently,
the array nearest does not directly store the identifiers
of training set nearest neighbors. Rather, it is used to
implement lists of points lying in the same Voronoi cell.
To this aim, each entry nearest[q] stores the identifier of
the successor of q in the list associated with the Voronoi
cell containing q. The identifier of the first point of each
list is then stored in an additional array having size |Si|.
This implementation of the FCNN rule requires∑
i<j |∆Si| · |∆Sj | additional distance computations and

has no additional asymptotic space requirements. Thus,
the upper bound of Theorem 3.3 remains unchanged.
Furthermore,

∑
i<j |∆Si| · |∆Sj | · log |∆Sj | worst case

comparisons of floating point numbers to sort distances
are additionally required, but it must be noticed that the
former operation is more expensive (its cost being related
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to the dimensionality of the feature space) than the latter
(which has instead a constant cost). Nevertheless, the
last implementation guarantees great savings in terms
of computed distances, and definitively outperforms the
previous one, as will be confirmed by the experimental
results.

3.3 Extension to k nearest neighbors

The nearest neighbor decision rule can be generalized
to the case in which the k nearest neighbors are taken
into account. In such a case, a new object is assigned
to the class with the most members present among the
k nearest neighbors of the object in the training set.
This rule has the additional property that it provides a
good estimate of the Bayes error and that its probability
of error asymptotically approaches the Bayes error [18],
[17]. Let T be a training set and let p be an element of
T . We denote by nnk(p, T ) the kth nearest neighbor of p
in T , and by nnsk(p, T ) the set {nni(p, T ) | 1 ≤ i ≤ k}.
Given a point q, the k-NN rule NNk(q, T ) assigns to q
the label of the class with the most members present in
nnsk(p, T ).
The FCNN algorithm can be directly adapted to deal

with k nearest neighbors, by using the following notion
of consistency: a subset S of T is said to be a k-
training set consistent subset of T if, for each p ∈ (T − S),
l(p) = NNk(p, S). Thus, this definition guarantees that
the objects in T −S are correctly classified by S through
the k nearest neighbor rule. For k = 1, the above defi-
nition coincides with the definition provided in Section
3.
The FCNN rule can directly compute a k-training set

consistent subset S of T by using the following definition
of Voren(p, S, T ). Let p be an element of S. We denote by
Vorenk(p, S, T ) the set {q ∈ (Vor(p, S, T ) − {p}) | l(q) 6=
NNk(q, S)}. Thus, the set Vorenk(p, S, T ) is composed of
the points lying in the Voronoi cell of p (p excluded)
which are misclassified by S through the k nearest
neighbor rule. The implementation of the variant taking
into account k nearest neighbors is the same as shown
in Figure 5 with two differences: each entry nearest[q]
of the array nearest stores the k objects of S closest
to q, while S assigns q to the most frequent class label
associated with the points in nearest[q]. Thus, Theorems
3.2 and 3.3 remain valid, but the space required is now
O(k|T |).
In Section 4.3, the behavior of this variant will be

studied on some real world domains.

4 EXPERIMENTAL RESULTS

In this section we present experimental results obtained
by using the FCNN rule.
Next, the competence preservation algorithms com-

pared are commented upon. As far as the FCNN rule
is concerned, the algorithm described in Section 3 was
used. As for the other methods, first of all it must be
noticed that the NNSRM rule is impracticable on large

training sets since its first step consists in computing all
the pairwise distances among training set objects. Hence,
we considered it only in experiments involving small-
sized data sets. Furthermore, we note that the MCNN
and CNN rules are slow if compared with the FCNN.
Thus, in order to improve the efficiency of these meth-
ods, we enhanced them by adopting the two following
strategies. (1) Avoiding repeated distance computations by
maintaining the nearest neighbor of each training set
point computed so far in an array of size |T | and then
comparing each point only with the incremental part of
the training set consistent subset (whose definition varies
depending on the method considered) during a generic
iteration. (2) Exploiting the triangle inequality technique
described in Section 3.2 with the MCNN rule. Indeed,
when set Sm becomes empty, the set C of the centroids
computed by the MCNN method plays the same role of
set ∆S in the FCNN rule. Since these implementations
represent a major modification of the basic methods, in
the following the variant of the CNN rule augmented
with strategy (1) is called fCNN, and the variant of the
MCNN rule employing both strategies (1) and (2) is
called fMCNN. It is worth pointing out that, with respect
to the subset computed and the number of iterations
performed, the fCNN rule is equivalent to the CNN rule
and the fMCNN is equivalent to the MCNN.
The experiments are organized as follows.
Section 4.1 describes the experiments executed on

three large training sets in order to study the scaling
and learning behavior of the FCNN rule.
Next, Section 4.2 compares the competence preser-

vation methods on small-sized real training sets. Both
mutual condensation ratios and classification accuracies
are measured and compared.
Finally, Section 4.3 experiments the FCNN method on

two pattern recognition domains, studies the behavior
of the variant of the basic rule taking into account k
neighbors, and compares the FCNN rule with hybrid
instance-based learning algorithms.
The results of the experiments presented below in this

section are then discussed in the subsequent Section 5.
In all the experiments we used the Euclidean distance

as a distance metrics. All the experiments were executed
on a Pentium IV 2.66GHz based machine with 1GB of
main memory under the Windows operating system.

4.1 Large data set

We tested the training set consistent subset methods on
the three following large data sets.
The Checkerboard data set is a synthetically generated

4×4 checkerboard data set partitioning points of the unit
square into two classes composed of 1,000,000 points.
The Forest Cover Type data set5 contains forest cover

type data from the US Forest Service. It is composed of
581,012 tuples associated with 30× 30 meter cells. Each
tuple has 54 attributes, of which 10 are quantitative (e.g.

5. http://kdd.ics.uci.edu/databases/covertype/covertype.html
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Method Time Subset size Accuracy Iterations Complexity Speed-up
Checkerboard FCNN1 149 5,535 (0.55%) 99.77 149 1.44 11.2

FCNN2 70 7,112 (0.71%) 99.75 25 1.45 44.4
FCNN3 1,452 5,510 (0.55%) 99.77 5,510 1.37 10.4
FCNN4 657 6,856 (0.69%) 99.76 6,856 1.37 85.6
fMCNN 2,877 7,387 (0.74%) 99.74 3,975 1.60 –
fCNN 2,748 7,866 (0.79%) 99.75 5 1.64 –
TRAIN – – 99.80 – – –

Forest Cover Type FCNN1 3,750 58,385 (10.05%) 85.64 59 1.61 17.0
FCNN2 2,566 60,465 (10.41%) 84.99 27 1.59 21.8
FCNN3 2,681 54,294 (9.35%) 84.78 54,294 1.59 21.1
FCNN4 2,521 56,802 (9.78%) 84.60 56,802 1.59 40.8
fMCNN 68,397 64,660 (11.13%) 85.39 29,234 1.84 –
fCNN 35,019 64,741 (11.14%) 85.58 8 1.83 –
TRAIN – – 87.51 – – –

DARPA 1998 FCNN1 33 3,365 (0.73%) 99.46 281 1.37 26.0
FCNN2 23 4,064 (0.89%) 99.45 23 1.31 68.0
FCNN3 308 3,205 (0.70%) 99.46 3,205 1.41 16.3
FCNN4 232 3,946 (0.86%) 99.44 3,946 1.35 79.7
fMCNN 858 4,730 (1.03%) 99.45 2,840 1.56 –
fCNN 1,054 4,497 (0.98%) 99.38 13 1.65 –
TRAIN – – 99.56 – – –

TABLE 1
Experiments on large data sets.

elevation, aspect, slope, etc.), 4 are binary wilderness
areas, and 40 are binary soil type variables. The data
is partitioned into 7 classes.
The Defense Advanced Research Projects Agency 1998

intrusion detection evaluation data set6 consists of net-
work intrusions simulated in a military network envi-
ronment. The TCP connections have been elaborated to
construct a data set of 23 numerical features, one of
which identifying the kind of attack: DoS, R2L, U2R, and
PROBING. We used the TCP connections from 5 weeks
of training data. The training set is composed of 458,301
objects partitioned into five classes (one representing
normal data and the other associated with the different
types of attack).
Table 1 summarizes the results of the experiments on

the whole training sets. For each experiment are reported
the execution time in seconds, the number of objects
composing the consistent subset (between parentheses
there is the relative size of the subset), the test accuracy
measured using the hold out method, the number of
iterations performed, the empirical complexity (defined
next), and the speed-up achieved by exploiting the tri-
angle inequality (see Section 3.2).
The empirical complexity is the ratio logD/ log |T |,

where D denotes the number of distances computed by
the method, and provides an estimate of its computa-
tional complexity. Although it provides a short summary,
it is not sufficient to characterize the effective effort of the
method, since the execution time is influenced also by
the number of iterations and by the number of training
set passes per iteration.
The speed-up (defined only for the FCNN methods) is

6. http://www.ll.mit.edu/IST/ideval/index.html

defined as the ratio between the worst case number of
distances computed by the method (see Theorem 3.3 and
the related part in the text) and the number of distances
actually computed by the method exploiting the triangle
inequality. It was measured to verify effectiveness of the
triangle inequality technique described in Section 3.2.

Scaling analysis of the execution time and of the size
of the consistent subset computed is reported in Figure
6.

4.1.1 Execution time

On the Checkerboard data set, the methods can be par-
titioned into three groups: the FCNN1 and FCNN2 are
very fast, the FCNN3 and the FCNN4 have higher time
requirements than the previous two rules, while the
fMCNN and the fCNN are slow. It is worth noting
that the fMCNN and fCNN rules are 40 times slower
than the FCNN2 rule. We also measured the execution
time of the MCNN and CNN rules, and, unfortunately,
they turned out to be very slow. Indeed, the MCNN
required 131,402 seconds to process 200,000 points, while
the CNN required 4,032 seconds to process 400,000
points. Since these rules are too time demanding, we
decided to disregard their analysis on larger samples.
Moreover, they are no longer considered in subsequent
experiments.

On the Forest Cover Type data set, the FCNN rules
clearly outperformed both the fCNN and the fMCNN
rules. In particular, on the whole training set, the
FCNN2, FCNN3, and FCNN4 rules required about 2,500
seconds, the FCNN1 performed slightly worse, while
the fCNN rule was more than 14 times slower than the
FCNN rules and the fMCNN was about 27 times slower.
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Fig. 6. Large data sets: scaling analysis.
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Fig. 7. Checkerboard data set: training set consistent
subset computed.

On the DARPA 1998 data set, the fastest rules were the
FCNN2 and the FCNN1, followed by the FCNN4 and
FCNN3, and eventually by the fMCNN and fCNN. The
first method was about 45 times faster than the latter.

4.1.2 Subset size

On the Checkerboard data set, the FCNN1 and FCNN3
computed the smallest subsets, while the FCNN2,
FCNN4, CNN, and MCNN computed greater subsets,
even though the MCNN computed a subset noticeably
greater than those computed by any other method.
Figure 7 shows the subset computed by the various

methods on the whole data set (for clarity, only the
square [0.15, 0.35]× [0.15, 0.35] is reported). Circles and

crosses are the consistent subset points of the two classes.
It can be noticed that the FCNN1 and FCNN3 rules
select points very close to the boundaries between the
checkerboard cells, while the other methods also contain
points inside the cells, though the MCNN and CNN
appears to have high percentage of such points.
On Forest Cover Type, the FCNN3 computed the small-

est subset, followed by the FCNN4, the FCNN1, the
FCNN2, the MCNN, and the CNN. Notice that the
subset computed by the FCNN3 rule contains 10,000
points less than the last two subsets.
As for DARPA 1998, three groups can be identified, i.e.

the FCNN3 together with FCNN1, which reported the
smallest subsets, the FCNN4 together with the FCNN2
and, finally, the CNN together with the MCNN. It is
worth noting that the largest subset is about 1.5 times
greater than those returned by the FCNN3 rule.

4.1.3 Iterations
As far as the number of iterations is concerned (see
Table 1), it can be noticed that the behavior of the
methods was the same in all the experiments. Indeed,
the FCNN3 and FCNN4 rules in general execute a lot
of iterations. In fact, since these rules add one point per
iteration, the number of performed iterations is identical
to the size of the training set consistent subset. Also, the
MCNN rule adds at most m points per iteration, where
m is the number of classes in T , and thus the number
of iterations it requires is greater than the number of
subset points divided by the number of classes. The
CNN rule always performs few iterations (less than ten)
since it selects almost all the points of the subset during
the first two iterations, and some additional iterations
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Fig. 8. Large data sets: training set classification accuracy
versus subset size.

are then needed to assure consistency. However, this
strategy has the drawback of producing a consistent
subset noticeably larger than that returned by competitor
methods. The FCNN2 rule always performs about a
few tens of iterations, since it starts from the centroids
of the classes and, due to the strategy adopted to se-
lect representatives of the misclassified points, rapidly
covers the regions of the feature space far from the
centroids. Finally, the FCNN1 rule is sensitive to the
complexity of the decision boundary. The more involved
this boundary is, the more iterations are required by
the rule. Indeed, an involved decision boundary can
make it difficult to cover the feature space quickly, due
to the strategy of selecting nearest Voronoi enemies as
representatives of misclassified points. Summarizing, in
general the FCNN1 rule performs more iterations than
the FCNN2 rule. Depending on the complexity of the
decision boundary, it might execute from approximately
the same number of iterations of the FCNN2 rule to some
hundreds of iterations.

4.1.4 Training-set accuracy

Figure 8 shows the accuracy of the subset Si, computed
during the ith iteration of the algorithms, in classifying
the overall training set T .
As for Checkerboard, for clarity, only values of accuracy

between 70% and 100% and subsets containing less than
6,000 points are shown. On this training set the curve
of the FCNN1 rule oscillates sensibly and converges
quite slowly. Differently, curves of the FCNN2, FCNN3,
and FCNN4 methods rapidly converge to high values of
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Fig. 9. Large data sets: points added per iter-
ation versus iteration number (on the bottom: cir-
cle=FCNN1, square=FCNN2, pentagram=FCNN3, hexa-
gram=FCNN4, triangle=MCNN, and diamond=CNN).

accuracy. The curve of the FCNN3 method also oscillates,
but its fluctuation is more contained than that of the
FCNN1 rule. It can be noticed that the area under the
curve of the FCNN4 rule is the largest among the areas
of all the methods (the first 178 points achieved an
accuracy 95.09%, 968 points an accuracy 99.00%, and
5,164 points an accuracy 99.90%), while the FCNN2
achieved the second largest area (366 points achieved
accuracy 94.38%, 2,377 points accuracy 99.04%, and 6,727
points accuracy 99.96%). The curve of the MCNN rule is
similar to that of the FCNN1 rule, but it is less wavering.
Finally, the curve of the CNN rule is the least accurate.
The above behavior is confirmed by the Forest Cover

Type data set, where the curve of the FCNN4 method
is the more accurate (the first 11,023 points achieved an
accuracy of 90%, 20,738 points an accuracy of 95%, and
48,009 points an accuracy of 99%), and by the DARPA
1998 data set, where the FCNN3 and FCNN4 showed
the largest area (the curves of these two methods were
smoothed for readability).

4.1.5 Course of the subset size

Figure 9 on the top shows the number |∆Si| of points
added versus the iteration number i for the FCNN1 and
FCNN2 methods. The curves show that during the initial
and final iterations the incremental sets include a rela-
tively small number of points, while during the central
iterations the size of the incremental sets reaches a peak.
Interestingly, the curve of the FCNN2 rule follows a
gaussian-like distribution, while the curve of the FCNN1
is also unimodal but less symmetrical. This behavior is
observed in all the experiments.
On the bottom it is shown the size |Si| of the subset Si

versus the normalized iteration number i
imax

. The curves
of the FCNN3, FCNN4, and MCNN rules are straight
lines, since they add almost a constant number of points
per iteration (one point in the case of the FCNN3 and
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Fig. 10. Large data sets: distances computed versus
iteration number (solid lines=distances computed by ex-
ploiting the triangle inequality, dashed lines=worst case
number of distances to be calculated by the triangle
inequality based method).

FCNN4). The curve of the CNN is a step, as almost all
the points are selected during the first and the second
iterations. Finally, the curves of the FCNN1 and FCNN2
rules resemble a sigmoid as expected from the previous
diagrams.

4.1.6 Distance computation savings
Figure 10 shows the distances computed by the FCNN1
and FCNN2 methods versus the iteration number. The
solid lines represent the number of distances actually cal-
culated by the methods exploiting the triangle inequality,
while the dashed lines represent the worst case number
of distances to be calculated by the same algorithms. It is
clear from these figures that great savings are obtained,
since the area between the solid and the dashed curve
is at least one order of magnitude greater than the area
under the solid curve. Similar curves were obtained also
for the FCNN3 and FCNN4 rules. Table 1 summarizes
the speed-up obtained by the FCNN methods through
the use of the triangle inequality.

4.1.7 Test accuracy
We discussed in Section 1 techniques for improving
accuracy of nearest neighbor classifiers. Here we are
mainly interested in comparing performances of differ-
ent competence preservation methods on the same data,
rather than in improving accuracy of the classifier. The
test accuracy measured through the hold out method is
summarized in Table 1. Accuracy of the methods was
always almost the same and, in two cases, identical to
the accuracy of the whole training set, while on the Forest
Cover Type data set, all the methods reported a sensible
loss in accuracy w.r.t. the training set.

4.2 Small data sets

In these experiments, a number of small training sets are
considered in order to compare the CNN, MCNN, and

Data set name Abbreviation Size Features Classes
Bupa BUP 345 6 2

Coil 2000 COI 4,992 85 2

Colon Tumor COL 62 2,000 2

Echocardiogram ECH 61 11 2

Ionosphere ION 351 34 2

Iris IRI 150 4 3

Image Segmentation IMA 2,310 19 7

Pen Digits PEN 7,494 16 10

Pima Indians Diabetes PIM 768 8 2

Satellite Image SAT 6,435 36 6

Spam Database SPA 4,207 57 2

SPECT Heart Data SPE 349 44 2

Vehicle VEH 846 18 4

Wisconsin Breast Cancer WBC 683 9 2

Wine WIN 178 13 3

Wisc. Prognostic Breast Cancer WPB 198 33 2

TABLE 2
UCI ML Repository data sets used in the experiments.

NNSRM rules with the FCNN rule.
The training sets employed are reported in Table 2.

The data sets are from the UCI Machine Learning Repos-
itory7. Ten fold cross validation has been accomplished
for each training set. Therefore, measures reported in the
following concerning subset sizes, classification accura-
cies, and execution times, are average values over the ten
executions. The NNSRM rule was tested only on training
sets having two class labels, since the implementation we
had available supports only this kind of data sets.
We start commenting on results shown in Table 3.

This table reports the size of the training set consistent
subsets (first line) together with the percentage of objects
included in each subset (second line). At the bottom of
the table, the achieved compression ratios are compared.
Since the size of the smallest training set consistent

subset is an intrinsic property of the training set, to
compare the various methods we measured the ratios
sizem1

%

sizem2
%
, where m1 and m2 denote two methods, while

sizemi
% denotes the percentage of training set objects

composing the subset computed by the method mi. In
particular, the entry of row mr and column mc at the
bottom of the table represents the geometric mean of

the ratios
sizemr

%

sizemc
%

achieved in the experiments reported

at the top of the table.
As for the size of the subset, on these training sets

the FCNN3 and FCNN4 rules performed better than
any other method. As for the FCNN1 and the FCNN2
methods, they computed a subset which is on average,
respectively, four and the five percent larger than that
computed by the FCNN4 method. This difference can be
explained by noticing that the FCNN3 and FCNN4 rules
are more accurate than the FCNN1 and FCNN2 rules in
the choice of the prototypes to add to the current subset.
The MCNN method performed even well: indeed the
increase in size w.r.t. the FCNN3 method is, on average,
one percent. The increase in size w.r.t. the FCNN3 and
FCNN4 of the CNN rule is noticeable, since it amounts
to sixteen percent. Finally, it can be observed that the

7. http://mlearn.ics.uci.edu/MLRepository.html
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FCNN1 FCNN2 FCNN3 FCNN4 MCNN CNN NNSRM
BUP 175 (56.45) 176 (56.77) 168 (54.19) 173 (55.81) 173 (55.81) 184 (59.26) 307 (99.03)
COI 904 (20.41) 907 (20.48) 902 (20.37) 913 (20.61) 909 (20.52) 1117 (24.86) 4372 (98.71)
COL 19 (34.55) 19 (34.55) 18 (32.73) 17 (30.91) 19 (34.55) 21 (37.63) 49 (89.09)
ECH 6 (11.11) 6 (11.11) 5 (9.26) 6 (11.11) 6 (11.11) 8 (14.57) 15 (27.78)
ION 60 (19.05) 62 (19.68) 59 (18.73) 58 (18.41) 55 (17.46) 73 (23.11) 309 (98.10)
IRI 15 (11.11) 14 (10.37) 16 (11.85) 14 (10.37) 13 (9.63) 16 (11.85) —
IMA 274 (13.18) 272 (13.08) 245 (11.78) 252 (12.12) 256 (12.31) 272 (13.08) —
PEN 300 (4.45) 284 (4.21) 286 (4.24) 249 (3.69) 253 (3.75) 311 (4.61) —
PIM 329 (47.61) 333 (48.19) 316 (45.73) 332 (48.05) 334 (48.34) 357 (51.65) 691 (100.00)
SAT 1051 (18.15) 1055 (18.22) 1007 (17.39) 983 (16.97) 1012 (17.48) 1128 (19.48) —
SPA 849 (22.42) 869 (22.95) 819 (21.63) 805 (21.26) 800 (21.13) 961 (25.38) 3774 (99.68)
SPE 98 (31.21) 104 (33.12) 93 (29.62) 96 (30.57) 94 (29.94) 107 (34.07) 257 (81.85)
VEH 401 (52.69) 398 (52.30) 385 (50.59) 382 (50.20) 390 (51.25) 405 (53.19) —
WBC 55 (8.96) 55 (8.96) 54 (8.79) 54 (8.79) 54 (8.79) 64 (10.41) 511 (83.22)
WIN 63 (39.38) 64 (40.00) 62 (38.75) 63 (39.38) 64 (40.00) 65 (40.57) —
WPB 84 (47.19) 85 (47.75) 79 (44.38) 83 (46.63) 84 (47.19) 90 (50.51) 175 (98.31)
FCNN1 — 1.00 1.04 1.04 1.04 0.90 0.32
FCNN2 1.00 — 1.05 1.05 1.04 0.91 0.33
FCNN3 0.96 0.95 — 1.00 0.99 0.87 0.31
FCNN4 0.96 0.96 1.00 — 0.99 0.87 0.32
MCNN 0.97 0.96 1.01 1.01 — 0.87 0.32
CNN 1.11 1.10 1.16 1.15 1.15 — 0.37
NNSRM 3.09 3.04 3.24 3.16 3.13 2.69 —

TABLE 3
Small data sets: training set consistent subset size and percentage of training set instances composing the training

set consistent subset (between parentheses).

NNSRM rule contains a huge percentage of the training
set objects. Thus, its increase in size w.r.t. the other
methods is very high, namely, more than 200% in almost
all the experiments.

Table 4 shows the classification accuracy measured
using ten-fold cross-validation. The last column is the
classification achieved when all the training set objects
are used as a reference set during classification. At the
bottom, the mean over all the experiments (mean 1) and
the mean over the experiments concerning the NNSRM
rule (mean 2) are reported. We can observe that all the
methods present a loss of classification accuracy w.r.t.
the use of the overall training set. This loss ranges from
−1.5% of the FCNN2 rule to −2.0% of the CNN rule.
Furthermore, we note that the NNSRM rule exhibits a
negligible loss in accuracy. This can be explained by
noticing that the subset computed by this rule contains
a high percentage of training set objects, almost all the
object in most cases, thus the small loss in accuracy is
not repaid by a significative reduction of the reference
set.

Finally, Table 5 summarizes the execution times. In
almost all cases the times amount to a small fraction of
one second or to a few seconds. Thus, we reported only

FCNN1 FCNN2 FCNN3 FCNN4 MCNN CNN NNSRM

FCNN1 — 1.07 0.63 0.79 0.03 0.39 0.30
FCNN2 0.93 — 0.56 0.70 0.02 0.31 0.24
FCNN3 1.59 1.80 — 1.25 0.05 0.61 0.42
FCNN4 1.27 1.44 0.80 — 0.04 0.49 0.36
MCNN 33.17 44.78 20.90 26.19 — 12.83 8.16
CNN 2.59 3.24 1.63 2.04 0.08 — 0.62
NNSRM 3.28 4.22 2.37 2.76 0.12 1.62 —

TABLE 5
Small data sets: relative execution time.

the relative speeds: the entry of row mr and column
mc of the table represents the geometric mean of the
ratios

timemr

timemc

, where timemi
denotes the execution time

of the method mi. It can be observed that, on these data
sets, the FCNN2 is the fastest method, followed by the
FCNN1 method, while the CNN, NNSRM, and MCNN
are the slowest methods. In particular, the CNN is two
and half times slower than the FCNN2, the NNSRM is
three times slower, and the MCNN is thirty times slower.
It should be noticed that the last result is due to the
presence of some outlying data sets on which the MCNN
rule performs badly (i.e. COI, SAT, and SPA).

4.3 Comparison with hybrid methods

In this section, some experiments on the MNIST and
MIT Face databases are described. These two real-world
databases are considered good test-beds for learning
techniques and pattern recognition methods. Thus, the
goal of this section is to test applicability of the FCNN
rule on some typical pattern recognition domains, and to
compare the FCNN methods with hybrid instance-based
learning methods on some real-world applications.
The MNIST database8 of handwritten digits has a

training set of 60,000 examples, and a test set of 10,000
examples. The digits have been size-normalized and
centered in a 28×28 image. Each example is composed of
784 features, each associated with a distinct pixel of the
image (pixel values range from 0 to 255). Examples are
partitioned in ten, about equally sized, classes. The MIT
Face database9 is a database of faces and non-faces, that
has been used extensively at the Center for Biological
and Computational Learning at MIT. This database has

8. http://yann.lecun.com/exdb/mnist/
9. http://www.ai.mit.edu/projects/cbcl
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FCNN1 FCNN2 FCNN3 FCNN4 MCNN CNN NNSRM TRAIN

BUP 58.53 ± 0.88 59.71 ± 0.80 59.41 ± 0.79 58.23 ± 0.81 56.18 ± 0.84 56.47 ± 0.71 58.23 ± 0.57 57.94 ± 0.59

COI 85.73 ± 0.20 85.45 ± 0.20 85.55 ± 0.16 85.85 ± 0.15 85.95 ± 0.40 86.61 ± 0.16 89.47 ± 0.16 89.39 ± 0.16

COL 75.00 ± 1.71 78.33 ± 1.50 76.67 ± 2.00 78.33 ± 1.68 76.67 ± 1.34 80.00 ± 1.79 78.33 ± 0.76 80.00 ± 1.00

ECH 95.00 ± 0.76 93.33 ± 0.82 95.00 ± 0.76 93.33 ± 0.82 91.67 ± 1.05 90.00 ± 1.11 96.67 ± 0.67 95.00 ± 0.76

ION 85.43 ± 0.69 86.00 ± 0.61 86.00 ± 0.61 86.29 ± 0.55 86.29 ± 0.75 86.00 ± 0.56 86.86 ± 0.69 86.86 ± 0.69

IRI 93.33 ± 0.52 92.00 ± 0.50 93.33 ± 0.52 92.67 ± 0.55 92.67 ± 0.72 95.33 ± 0.52 — 95.33 ± 0.43

IMA 94.81 ± 0.18 95.71 ± 0.22 95.02 ± 0.22 94.63 ± 0.24 95.33 ± 0.44 94.63 ± 0.19 — 96.36 ± 0.16

PEN 98.69 ± 0.03 98.75 ± 0.03 98.60 ± 0.03 98.44 ± 0.04 98.64 ± 0.18 98.60 ± 0.03 — 99.44 ± 0.03

PIM 67.11 ± 0.29 67.63 ± 0.42 66.45 ± 0.22 66.71 ± 0.34 65.92 ± 0.61 65.39 ± 0.37 69.21 ± 0.47 69.21 ± 0.47

SAT 88.48 ± 0.15 88.44 ± 0.14 88.20 ± 0.12 88.68 ± 0.14 88.90 ± 0.40 88.69 ± 0.16 — 90.64 ± 0.13

SPA 86.05 ± 0.22 86.17 ± 0.20 85.88 ± 0.29 86.17 ± 0.23 85.57 ± 0.45 86.45 ± 0.20 89.79 ± 0.14 89.79 ± 0.14

SPE 83.53 ± 0.61 85.00 ± 0.55 84.41 ± 0.67 82.94 ± 0.72 82.35 ± 0.82 83.82 ± 0.67 86.47 ± 0.46 86.47 ± 0.46

VEH 62.38 ± 0.55 64.76 ± 0.57 63.33 ± 0.79 62.14 ± 0.61 62.02 ± 0.85 62.38 ± 0.72 — 65.36 ± 0.68

WBC 93.53 ± 0.21 93.68 ± 0.25 93.53 ± 0.26 93.68 ± 0.28 93.82 ± 0.36 93.82 ± 0.13 95.88 ± 0.18 96.03 ± 0.13

WIN 76.47 ± 0.79 75.88 ± 0.76 74.71 ± 0.91 77.06 ± 0.72 74.71 ± 0.94 74.71 ± 0.87 — 77.06 ± 0.85

WPB 68.95 ± 0.72 68.42 ± 1.15 68.42 ± 0.88 68.42 ± 1.13 67.37 ± 1.00 68.42 ± 1.00 70.53 ± 0.75 71.05 ± 0.79

mean 1 82.06 82.45 82.16 82.10 81.50 81.96 — 84.12
mean 2 79.89 80.37 80.13 80.00 79.18 79.70 82.14 82.17

TABLE 4
Small data sets: classifier accuracy.

been partitioned in a training set of 25,317 face and 2,603
non-face examples, and in a test set of 2,804 face and
298 non-face examples. Each example (a 19× 19 image)
consists of 361 features whose values range between 0
and 1.

In all the experiments the Euclidean distance was
used.

Experimental results concerning the FCNN method
are summarized in Table 6. As for the MNIST data
set (see Table 6(a)), all the FCNN methods employed
from fifteen to twenty minutes to compute a consistent
subset including about 10% of the data set objects. The
test accuracy of the FCNN rule is 94.5% (in [23] a k-
nearest neighbor classifier using the whole training set,
the parameter k set to 3, and the Euclidean distance,
achieved 5.0% test error rate). On the MIT Face data set
the FCNN1 and FCNN2 employed about 25 seconds,
while the FCNN3 and FCNN4 about 95 seconds. The
extracted subset is, in all cases, composed of 5.5% data
set objects. The test accuracy is good, being close to 97%.

Figure 11 shows the results obtained by using the
variant of the FCNN rule taking into account k nearest
neighbors (see Section 3.3), for k ranging from 1 to
7. By using k = 3, the execution time (Figure 11 on
the left) increased with respect to the case of k = 1.
For greater values of k, the growth slowed down and
the time remained substantially unchanged. As for the
subset size (Figure 11 on the center), it remained almost
the same for MNIST, while slightly decreased for MIT
Face. In the latter case, the reduction achieved by the
FCNN3 and FCNN4 methods is substantial. Finally, by
increasing the number k of considered nearest neighbors,
the test accuracy (Figure 11 on the right) improved. For
example, the accuracy of the FCNN1 rule increased of
1.5%− 2.0% for k = 7.

The FCNN rule was compared with the DROP3 [32],
ELGrow, and Explore [9] hybrid instance-based learning

algorithms10. The DROP3 was observed to have the best
mix of storage reduction and generalization among the
Decremental Reduction Optimization Procedures DROP1-
DROP5, presented in [32]. The ELGrow and Explore
methods are able to achieve high storage reduction, but
are not as accurate as the DROP methods.
These methods were compared with the FCNN rules

on the data setsMNIST andMIT Face (see Figure 12). The
whole training set and some random samples having
increasing size were considered to study the scaling
behavior. If required by the method, the parameter k
was set to 3 as done in [32].
Figure 12 shows on the left the execution time versus

the training set size of the FCNN2, DROP3, ELGrow,
and Explore algorithms on the two above described
data sets. As already stated, the FCNN rule employed
about one thousand seconds on the whole MNIST data
set. On this data set, the other methods were very
slow and it was decided to stop their execution. Thus,
the largest sample considered for all methods included
ten thousand examples. In this case, DROP3 required
about 25,000 seconds, ELGrow and Explore about 7,000
seconds, and FCNN about 45 seconds. On the whole
MIT Face training set, DROP3 employed about 75,000
seconds, ELGrow and Explore about 23,000 seconds, and
FCNN about 25 seconds. It is clear that, as far as the
learning speed is concerned, there is a difference of at
least three orders of magnitude between the FCNN and
the other competence enhancement methods on these
medium-sized data sets. On larger data sets the hybrid
methods are impractical.
Figure 12 shows on the center the relative subset

size versus the training set sample size. The compe-
tence enhancement methods confirmed their expected
behavior, since ELGrow and Explore achieved very high
data reduction. The FCNN has the smallest reduction
ratio but, except for very small sample sets, the size

10. The implementations of these algorithms as available at the lo-
cation ftp://axon.cs.byu.edu/pub/randy/ml/dropwere used.
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Fig. 11. The effect of considering k nearest neighbors on
the MNIST and MIT Face data sets.

of its consistent subset is very close to that of DROP3,
although slightly larger.

Finally, Figure 12 shows on the right the test accuracy
achieved by using the subset computed by the various
condensation methods. The ELGrow and Explore meth-
ods are the less accurate methods. As observed in [32],
their aggressive storage reduction strategy may worsen
their generalization capability. For example, on the MIT
Face data set the subsets computed By ELGrow and
Explore always misclassify the examples of the minority
class. The loss in accuracy of ELGrow/Explore w.r.t.
FCNN on the MNIST is about 10%. On the contrary,
the DROP3 method confirms its good generalization
capabilities due to a noise-filtering pass. It must be
pointed out that FCNN performed remarkably well
compared to instance-based competence enhancement
methods. Indeed, other than performing better than
ELGrow/Explore, it has the same accuracy of DROP3
on the MNIST data set, while the difference in accuracy
between these two methods is about one percent on the
MIT Face data set.

(a) MNIST data set

Execution Subset Test
time size accuracy

FCNN1 1,031.5 6,275 (10.5%) 94.5

FCNN2 959.3 6,130 (10.2%) 94.5

FCNN3 1,244.6 5,704 (9.5%) 94.2

FCNN4 1,146.7 5,503 (9.2%) 94.2

(b) MIT Face data set

Execution Subset Test
time size accuracy

FCNN1 26.5 1,627 (5.8%) 96.8

FCNN2 25.2 1,557 (5.5%) 96.8

FCNN3 95.0 1,593 (5.7%) 96.5

FCNN4 91.2 1,596 (5.7%) 96.5

TABLE 6
Execution time (seconds), subset size, and test accuracy

of the FCNN rules on the MNIST and MIT Face data
sets.
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Fig. 12. Comparison with hybrid methods.

Since DROP3 incorporates a noise-filtering pass based
on removing instances misclassified by its k nearest
neighbors (k = 3 in the experiments), Figure 12 reports
also the behavior of the FCNN2 rule taking into account
k = 3 neighbors (the solid dotted line). By considering
three nearest neighbors, as already observed, the FCNN
slightly increases its execution time, with no appreciable
difference on the size of the subset, and the accuracy im-
proves and is identical to that of noise-filtering methods.

5 DISCUSSION AND CONCLUSIONS

This work introduces a novel algorithm, called the
FCNN rule, for computing a training set consistent
subset for the nearest neighbor rule.
The algorithm starts by selecting the centroid of each

training set class and then, until consistency is achieved,
selects for insertion a representative of the misclassified
points of each Voronoi cell induced by the current subset.
Four variants of the basic method are presented, called
FCNN1-4 rules. In particular, the FCNN1 and FCNN2
rules augment the subset with all such representatives,
while the FCNN3 and FCNN4 rules select only a repre-
sentative per iteration. The FCNN1 (FCNN2 resp.) and
the FCNN3 (FCNN4 resp.) rules are based on the same
definition of representative.
Each of these rules has strengths and weaknesses that,

generally speaking, can be summarized as follows.
The FCNN3 and FCNN4 are more careful in the choice

of the points to select for insertion and, hence, the
FCNN3 (FCNN4 resp.) returns a subset smaller than
FCNN1 (FCNN2 resp.).
On the contrary, the FCNN1 and FCNN2 execute few

iterations and are noticeably faster, with the FCNN2
being the fastest. This can be explained by noticing that
it appears to be little sensitive to the complexity of the
decision boundary. Indeed, it rapidly covers regions of
the space far from the centroids of the classes and always
performs about a few tens of iterations.
The FCNN1 is slightly slower than the FCNN2 and

it requires more iterations, up to a few hundreds. But,
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together with the FCNN3, it is likely to select points very
close to the decision boundary and hence may return
a subset smaller than that of the FCNN2. From what
has been stated above, as far as the subset computed
is concerned, the FCNN1 and FCNN3 are probably
preferable when the classes are well-separated (for an
example, see the subsets of the Checkerboard data set in
Figure 7).
The FCNN4 rule presents the greatest area under the

curve of the training set accuracy versus the current
subset size. Hence, it can be stopped early, when a
satisfactory degree of training set accuracy is achieved,
to obtain a noticeably smaller condensed subset (as
an example, the first thousand points selected on the
Checkerboard data set guarantee a 99% accuracy on the
training set, though the final set is includes about seven
thousands points). This strategy can be profitably used
also with the other FCNN rules.
The FCNN rule is order independent, its worst case

time complexity is quadratic with an often small constant
pre-factor, and permits the triangle inequality to be
effectively exploited to reduce computational effort (as
witnessed by Figure 10). It was tested on large and high-
dimensional training sets with very good results. For
example, on an ordinary personal computer it was able
to compute a consistent subset (including about four
thousands out of about half a million points) of the
DARPA 1998 data set in more or less twenty seconds.
The FCNN rule was compared with the CNN, MCNN,

and NNSRM algorithms.
Comparison on small data yielded the following out-

comes. As regards classification accuracy, there are no
appreciable differences, since all the methods present a
comparable loss (about the 1.5%) with respect to the
whole training set. The only exception is the NNSRM,
that scored the same accuracy as the training set. Nev-
ertheless, as far as the condensation size is concerned,
the MCNN is the only rule comparable with the FCNN.
Indeed, the CNN computes a subset from 10% to 15%
larger than that of the FCNN, while the NNSRM tends
to select almost all the training set objects and, hence,
the slightly better accuracy it offers is not repaid by an
appreciable reduction of the training set.
Existing condensation algorithms are too slow to be

applicable to large data sets, since their complexity
is super-quadratic or even cubic. Thus, improved im-
plementations of the CNN and MCNN rules, called
respectively fCNN and fMCNN, are introduced here,
and compared to the FCNN. Experiments show that the
FCNN rule outperforms even these enhanced methods
while guaranteeing the same accuracy as the training
set. It is worth noticing that, as far as the classification
accuracy is concerned, this is the expected behavior of
the compared methods, since their goal is to preserve
the competence of the whole training set.
The observed superior learning speed is also sub-

stantiated by the learning behavior comparison. Indeed,
the FCNN rules approach consistency more rapidly (see

Figure 8) and return a smaller subset.
A variant of the FCNN taking into account k nearest

neighbors has been introduced and experimented on two
real data sets. By increasing k, the execution time slightly
increases, the size of subset remains almost the same,
and test accuracy may improve.
The comparison with hybrid methods on medium-

sized (including from ten to twenty thousands exam-
ples) real-world (character and face recognition) high-
dimensional (up to 784 features) data sets, showed that
FCNN is at least three order of magnitude faster, and
that it achieves both a reduction ratio and a test ac-
curacy comparable to DROP3 (see Figure 12), although
DROP3 incorporates a data set editing step able to
filter out noise and producing a slightly smaller subset.
ELGrow/Explore perform noticeable worse than FCNN
in terms of accuracy, but have higher reduction ratios.
From the scaling analysis, it is clear that hybrid methods
are impractical on larger data sets. Thus, in real-world
domains, the FCNN can compute a model comparable
to that of hybrid algorithms. The FCNN is efficient even
if the collection of data to be processed is very large,
while other algorithms may be not able to manage the
same data set sizes in a reasonable amount of time.
To conclude, it is worth pointing out that this is the

first work providing condensation algorithms for the
nearest neighbor rule that can be efficiently applied to
large data sets.
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APPENDIX

Proof of Theorem: 3.2 (i) First, we note that the time
required to compute the class centroids of the training
set and to perform a single iteration of the algorithm is
upper bounded by a polynomial in the number |T | of
training set instances.
During a generic iteration of the algorithm at least one

element of T −S is selected and inserted in S, otherwise
the algorithm stops. Let’s call m the number of class
labels in the training set. Since subset S contains initially
m elements, in the worst case the algorithm performs
|T | −m+ 1 iterations.
The training set T being composed of a finite number

of elements, it can be concluded that the overall time
required by the method is finite.
(ii) The property is guaranteed by the termination

condition. Indeed, the algorithm stops when the set ∆S
becomes empty, that is, if the condition of Theorem 3.1
is satisfied.

(iii) First of all we show that, given a (not neces-
sarily proper) subset X of T , it holds that (a) the set
Centroids(X), composed of the class centroids of X , is
order independent, (b) point nn(p,X) of X closest to p
is order independent, (c) for each p ∈ X , the Voronoi
cell V or(p,X, T ) is order independent, and (d) point p∗

of X such that |V oren(p∗, X, T )| is maximum is order
independent.
(a) Consider the set Centroids(X). Let l1, . . . , lm be the

class labels in X , and let Xi be the subset of X composed
of the points of the class li. Then, the set Centroids(X)
has the form {c1, . . . , cm}, where each ci is the centroid
of Xi, that is the point of Xi which is closest to the
geometrical center Ci of Xi. Clearly, Ci is unique. As
for ci, usually it is unique, but ties are possible and are
solved in favor of the lexicographically smallest point.
Let q = (q1, . . . , qd) and r = (r1, . . . , rd) be two points.

Then q is lexicographically smaller than r if there is an
integer j, 1 ≤ j ≤ d, such that q1 = r1, . . ., qj−1 = rj−1,
and qj < rj . If there is more than one lexicographically
smallest point, then it is the case that these points are
identical, and no matter which is selected. Thus, the set
computed is independent of the order in which Xi is
processed.
(b) Consider point nn(p,X). Usually, the point of X

closest to p is unique, but ties are possible and are solved
in favour of the lexicographically smallest point. Nev-
ertheless, it can be that there are two lexicographically
smallest points q and r having different class labels lq
and lr. In this case q is selected, provided that lq < lr.
Hence, the point selected is independent of the order in
which X is processed.
(c) Usually, for each point q ∈ T the nearest neighbor

of q in X is unique, and thus also the Voronoi cell which
it belongs to, but ties are possible and are solved as
explained in point (b) above.
(d) We have already seen that the set V or(p,X, T )

is order independent. Thus, for each p ∈ X sets
V oren(p,X, T ) are order independent. Usually point
p∗ ∈ X maximizing |V oren(p∗, X, T )| is unique, but ties
are possible and are solved in favor of the lexicographi-
cally smallest point.
It remains to show that, for each iteration i ≥ 0, the set

of points∆Si selected by the algorithm is independent of
the order in which training set elements are processed.
The proof now proceeds by induction on the iteration
number.
Let i = 0, then S0 = ∅ and ∆S0 is the set Centroids(T ).

Hence, the result follows from point (a).
Let i > 0, and assume that ∆S0, . . . ,∆Si−1 are or-

der independent. Then, Si = Si−1 ∪ ∆Si−1 = Si−2 ∪
∆Si−2 ∪ ∆Si−1 = . . . = ∆S0 ∪ . . . ∪ ∆Si−1 is or-
der independent. Furthermore, for each p ∈ Si, (i)
V oren(p, Si, T ) is order independent being a particular
subset of V or(p, Si, T ), and (ii) rep(p, V oren(p, Si, T ))
is order independent, as both nn(p, V oren(p, Si, T ))
and nn(p, Centroids(V oren(p, Si, T ))) are order inde-
pendent. Hence, it can be concluded that ∆Si is order
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independent, and the result follows. �


