
COPYRIGHT NOTICE

c© 2006 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copy-
righted component of this work in other works.

This is the author’s version of the work. The definitive version was
published in IEEE Transactions on Knowledge and Data Engineer-

ing (TKDE), 18(2):145-160, February 2006.

DOI: http://dx.doi.org/10.1109/TKDE.2006.29.

i

http://dx.doi.org/10.1109/TKDE.2006.29


1

Distance-Based Detection
and Prediction of Outliers

Fabrizio Angiulli, Stefano Basta, Clara Pizzuti

Abstract—A distance-based outlier detection method that finds the top outliers in an unlabelled data set and provides a subset of it,
called outlier detection solving set, that can be used to predict the outlierness of new unseen objects, is proposed. The solving set
includes a sufficient number of points that permits the detection of the top outliers by considering only a subset of all the pairwise
distances from the data set. The properties of the solving set are investigated, and algorithms for computing it, with sub-quadratic time
requirements, are proposed. Experiments on synthetic and real data sets to evaluate the effectiveness of the approach are presented.
A scaling analysis of the solving set size is performed, and the false positive rate, that is the fraction of new objects misclassified as
outliers using the solving set instead of the overall data set, is shown to be negligible. Finally, to investigate the accuracy in separating
outliers from inliers, ROC analysis of the method is accomplished. Results obtained show that using the solving set instead of the data
set guarantees a comparable quality of the prediction, but at a lower computational cost.

Index Terms—Distance-based outliers, Outlier detection, Outlier prediction, data mining.

✦

1 INTRODUCTION

Outlier detection in large data sets is an active research
field in data mining [1] that has many applications in
all those domains that can lead to illegal or abnormal
behavior, such as fraud detection [2], network intrusion
detection [3], [4], insurance fraud, medical diagnosis,
marketing or customer segmentation. Many supervised
approaches to outlier mining first learn a model over
example data already labelled as exceptional or not [2],
[3], and then evaluate a given input as normal or outlier
depending on how well it fits the model. Unsupervised
methods, instead, have the task to discriminate each
datum as normal or exceptional when the training ex-
amples are not labelled. Among the unsupervised ap-
proaches, distance-based outlier detection methods distin-
guish an object as outlier on the base of the distance to its
nearest neighbors [5], [6], [7], [4], [8]. These approaches
differ in the way the distance measure is defined, but in
general, given a data set D of objects, an object p can be
associated with a weight or score, that is a function of
the k nearest neighbors distances. Intuitively, the weight
measures how an object is dissimilar from its neighbors.
Let w∗ be the n-th greatest weight of an object in D.
An outlier w.r.t. D is an object scoring a weight w.r.t. D
greater than or equal to w∗.

It is worth to point out that research on distance-
based outlier detection has mainly aimed at developing
methods to detect outliers in an input data set, rather
than developing methods able to learn a model for pre-
dicting outliers in new incoming data. In these methods
prediction on a new object p, to establish if it is an outlier,
can be realized by computing the distances of p to all the

The authors are with the ICAR-CNR Institute of High Performance Comput-
ing and Networking of the Italian National Research Council, Via Pietro Bucci
41C, 87036 Rende (CS), Italy. Email: {angiulli,basta,pizzuti}@icar.cnr.it

objects in the data set and then comparing the obtained
weight with that of the n-th outlier.
In this paper we focus on unsupervised distance-

based outlier detection and prediction and we distin-
guish between these two tasks. Outlier detection consists
in finding the top n outliers in D, that is the n objects of
D having greatest weights. Outlier prediction corresponds
to deciding if an incoming object is an outlier, that is if
its weight w.r.t. D is greater than or equal to w∗.
We introduce the concept of outlier detection solving set

S, a subset of D that includes a sufficient number of
points from D to allow us to consider only the distances
among the pairs in S × D to obtain the top n outliers.
We then present an algorithm that computes the solving
set and obtains the top n outliers in D and the weight
w∗, by avoiding to calculate the distance of an object
to each other to obtain its k nearest neighbors. Finally
we show that the solving set S, besides containing the
top n outliers in D, allows to effectively classify each
new unseen object as outlier or not by approximating
its weight w.r.t. D with its weight w.r.t. S. In fact, each
new object can be classified as an outlier (w.r.t. D) if
its weight w.r.t. S is above w∗. From this perspective,
the solving set S is a learned model and can be seen as
a compressed representation of D, analogously to sample
compression schemes for a concept class [9] or to support
vector extraction for classification tasks [10].
The contributions of this work can be summarized as

follows:

• the concept of outlier detection solving set, a subset of
the input data set representing a model that can be
used to predict outliers, is defined;

• the computational complexity of computing a mini-
mum cardinality solving set, showing that the prob-
lem is in general intractable, is analyzed;

• algorithms that compute with sub-quadratic time



2

requirements a solving set and the top n outliers
are provided;

• experimental evidence that the solving set is a frac-
tion of the overall data set, and that the false positive
rate obtained using the solving set is negligible is
given;

• the ROC analysis of the method to investigate
its accuracy in separating outliers from inliers is
performed. Results obtained show that using the
solving set instead of the data set to predict outliers
is efficient and effective.

The paper is organized as follows. In the next section
an overview on unsupervised distance-based outlier de-
tection approaches is given. In Section 3 the problems
that will be treated are formally defined. In Section 4 we
define the concept of solving set and explain how to ex-
ploit it to solve the introduced problems. In Section 5 the
complexity analysis of the task of computing a solving
set is done. In Section 6 methods for computing the top n
outliers and the solving set are described. Finally, Section
7 reports experimental results and discusses the choice
of the parameters and the applicability of the approach
proposed.

2 RELATED WORK

In this section an overview of unsupervised distance-
based outlier mining methods is given, though different
approaches have been proposed [11], [12], [13], [14], [15].
The concept of distance-based outlier relies on the no-

tion of neighborhood of a point, typically the k nearest
neighbors, and has been first introduced by Knorr and
Ng [5], [16]. Distance-based outlier are those points for
which there are less than k points within the distance δ
in the input data set. This definition does not provide a
ranking of outliers and needs to determine an appropri-
ate value of the parameter δ. The authors present two
algorithms, the first one is a nested loop algorithm that
runs in O(dN2) time, while the second one is a cell-
based algorithm that is linear with respect to N , the
number of points of the data set, but exponential in d, the
number of dimensions of the data set. This last method
is fast only if d ≤ 4. On the other hand, the nested loop
approach is impractical when outliers in large data sets
have to be mined. Thus, efforts for developing efficient
algorithms that scale to large real data sets, have been
recently made.
Ramaswamy et al. [6] modified the definition of outlier

introduced by Knorr and Ng and consider as outliers
the top n points p whose distance to their k-th nearest
neighbor is greatest. To detect outliers, a partition-based
algorithm is presented that, first, partitions the input
points using a clustering algorithm, and then prunes
those partitions that cannot contain outliers. The experi-
ments, up to 10 dimensions, show that the method scales
well with respect to both data set size and dimensional-
ity. This definition, however, does not take into account
the information contained in the k-neighborhood of a

point and thus it could not properly distinguish between
dense or sparse neighborhood.
In [7] a new definition of distance-based outlier that

takes into account the whole neighborhood by consid-
ering for each point p the sum of the distances from its
k nearest neighbors, is proposed. This sum is called the
weight of p, Ωk(p), and it is used to rank the points of
the data set. Outliers are those points having the largest
values of weight. Ωk(p) is a more accurate measure of
how much a point p can be considered an outlier, because
it takes into account the sparseness of the neighborhood
of a point. In order to compute these weights, the k
nearest neighbors of each point are found in a fast and
efficient way by linearizing the search space using the
Hilbert space filling curve. The algorithm is able to deal
with high dimensional data sets and scales near linearly
with respect to both the dimensionality and the size of
the data set.
An analogous definition of outlier based on the k-

nearest neighbors has been used in [4] for unsupervised
anomaly detection to detect intrusions in unlabelled
data. Data elements are mapped in a feature space and
anomalies are detected by determining which points lie
in sparse regions of the feature space. Experiments on
data sets of network connections and system call traces
showed that the algorithms were able to find intrusions
over unlabelled data.
More recently, Bay and Schwabacher [8] in order to

find the top-n distance-based outliers of an input data
set, augmented the naive distance-based nested loop
algorithm, that finds the k nearest neighbors of each data
set point, with a simple pruning rule and randomization
obtaining a near linear scaling on real, large, and high
dimensional data sets. The algorithm is sensitive to the
order and to the distribution of the data set. If the data
is sorted or correlated, the performance could be poor.
A detailed discussion on the usefulness, the meaning,

and the intensional knowledge of distance-based out-
liers, as well as a description of the real life application
domains for which this notion of outlier is relevant, can
be found in [17], [16], [6], [4].

3 PROBLEM FORMULATION

In this section we formally give the definition of the
problems that will be treated. An object is represented
by a set of d measurements (also called attributes or
features).
Given a set D of objects, an object p, a distance dist on

D∪ {p}, and a positive integer number i, the i-th nearest
neighbor nni(p,D) of p w.r.t. D is the object q of D such
there exist exactly i− 1 objects r of D (if p is in D then p
itself must be taken into account) such that dist(p, q) ≥
dist(p, r). Thus, if p is in D then nn1(p,D) = p, otherwise
nn1(p,D) is the object of D closest to p.
Given a set D of N objects, a distance dist on D, an

object p of D, and an integer number k, 1 ≤ k ≤ N ,

the weight wk(p,D) of p in D (w.r.t. k) is
∑k

i=1 dist(p,
nni(p,D)).



3

Intuitively, the notion of weight captures the degree of
dissimilarity of an object with respect to its neighbors,
that is, the lower its weight is, the more similar its
neighbors are. We denote by Di,k, 1 ≤ i ≤ N , the object
of D scoring the i-th largest weight w.r.t. k in D, i.e.
wk(D1,k, D) ≥ wk(D2,k, D) ≥ . . . ≥ wk(DN,k, D).
Given a set D of N objects, a distance dist on D,

and two integer numbers n and k, 1 ≤ n, k ≤ N , the
Outlier Detection Problem ODP 〈D, dist, n, k〉 is defined
as follows: find the n objects of D scoring the greatest
weights w.r.t. k, i.e. the set D1,k, D2,k, . . . , Dn,k. This set
is called the solution set of the problem.
Given a set U of objects, a subset D of U having

size N , an object q of U , called query object or simply
query, a distance dist on U , and two integer numbers
n and k, 1 ≤ n, k ≤ N , the Outlier Prediction Problem
OPP 〈D, q, dist, n, k〉 is defined as follows: is wk(q,D) ≥
wk(Dn,k, D) ?
An object such that its weight w.r.t. D is equal to or

greater than the weight of Dn,k is said to be an outlier
w.r.t. D (or equivalently a D-outlier), otherwise it is said
to be an inlier w.r.t. D (or equivalently a D-inlier).
The ODP can be solved in O(|D|2) time by computing

all the distances {dist(p, q) | (p, q) ∈ D × D}, while a
comparison of the query object q with all the objects in
D, i.e. O(|D|) time, suffices to solve the OPP . Real life
applications deal with data sets of hundred thousands or
millions of objects, and thus these approaches are both
not applicable.

4 SOLVING ODP AND OPP
In this section we introduce the concept of outlier detec-
tion solving set and explain how to exploit it to solve both
the ODP and the OPP .
Definition 4.1: Given a set D of N objects, a dis-

tance dist on D, and two integer numbers n and k,
1 ≤ n, k ≤ N , an outlier detection solving set for the
ODP 〈D, dist, n, k〉 is a subset S of D such that:

1) |S| ≥ max{n, k}, and
2) Let lb(S) denote the n-th greatest element of

{wk(p,D) | p ∈ S}. Then, for each q ∈ (D − S),
wk(q, S) < lb(S).

In the following the outlier detection solving set will be
referred simply as solving set. Intuitively, a solving set
S is a subset of D such that the distances {dist(p, q) |
p ∈ S, q ∈ D} are sufficient to state that S contains the
solution set of the ODP .
Let n∗ ≥ n denote the positive integer such

that wk(Dn,k, D) = wk(Dn∗,k, D) and wk(Dn∗,k, D) >
wk(Dn∗+1,k, D). We call the set {D1,k, . . ., Dn∗,k} the
extended solution set of the ODP 〈D, dist, n, k〉. The follow-
ing Proposition proves that S ⊇ {D1,k, . . . , Dn∗,k} and,
hence, that lb(S) is equal to wk(Dn,k, D).
Proposition 4.2: Let S be a solving set for the ODP

〈D, dist, n, k〉. Then S ⊇ {D1,k, . . . , Dn∗,k}.
Proof: The proof is by contradiction. Assume that

there exists i, 1 ≤ i ≤ n∗, such that Di,k 6∈ S. Then

a

b

c

a

b

c

a

b

c

Fig. 1. An example of solving set for n = 1 and k = 2.

Di,k ∈ (D − S) and wk(Di,k, S) ≥ wk(Di,k, D) ≥ lb(S),
thus S is not a solving set.
Clearly, D is a solving set, and the proposition states
that a solving set contains at least the extended solution
set {D1,k, . . . , Dn∗,k}. In general, an extended solution
set does not suffice to form a solving set. For example,
consider Figure 1, where a data set D of 7 points of R2

is shown. The top outlier for k = 2 is the point a. The
black filled points in the figure on the center represent a
solving set S = {a, b, c} for n = 1 and k = 2. In the figure
on the right, the solid arrows link points in D−S to their
1-st and 2-nd nearest neighbor in S, while the dashed
arrows link points in S to their 2-nd nearest neighbor in
D (the 1-st nearest neighbor of each of these points in D
is itself; note that, in general, the 2-nd nearest neighbor
could not belong to S). As k = 2, the sum of the length
of the solid arrows outgoing each point p of D−S, that is
w2(p, S), is an upper bound to the weight of these points,
while the length of the dashed arrows corresponds to
the weight of each point of S. In particular, the distance
from a to b represents lb(S): S is a solving set as lb(S) >
w2(p, S) for each point p ∈ (D − S). S, of course, must
contain a, the top outlier of D. Furthermore, neither the
set {a, b}, nor the set {a, c} are sufficient to form a solving
set.
We propose to use the solving set S to solve the outlier

prediction problem OPP in a fast way by computing the
weight of the new objects with respect to the solving set
S instead of the complete data set D. Hence, finding a
solving set for ODP can be seen as a training phase
in which the learned model is the solving set S. In
practice, given P = ODP 〈D, dist, n, k〉 we first solve P
by finding a solving set S for P , and then we answer any
OPP 〈D, q, dist, n, k〉 in the following manner: reply “no”
if wk(q, S) < lb(S) and “yes” otherwise. We say that q is
an S-outlier if wk(q, S) ≥ lb(S), and S-inlier otherwise.
Figure 2 shows an example of application of this

approach. In Figure 2(a) there is a data set D of 1,000
points of R

2. In figure 2(b) a solving set S (96 points)
for ODP 〈D, dist, 10, 6〉, where dist is the Euclidean dis-
tance, is depicted (the stars represent the solution set).
Figure 2(c) shows the outlier prediction obtained using
the solving set S for over 10,000 queries. In particular,
the black points represent queries detected as S-inliers,
while gray points are queries classified as S-outliers.
Finally, in Figure 2(d) the lightness of the 10,000 points q



4

(a) Data set (b) Solving and solution set

(c) Prediction using solving set (d) Query outlierness

Fig. 2. An example of outlier prediction using solving sets.

is proportional to the ratio wk(q,S)
lb(S) . The figure shows that

more distant a query object is from the data set, higher
is its weight.

Predicted label w.r.t. S
S-inlier S-outlier

Label D-inlier true negative false positive
w.r.t. D D-outlier false negative true positive

TABLE 1
Classification of the query objects.

To evaluate the quality of the solution that can be ob-
tained for the OPP using the solving set, we adopt two
standard measures developed for intrusion detection
systems [4], [18]: false positive rate and detection rate. These
measures are based on the classification of the query
objects reported in Table 1. The false positive rate is the
ratio between the number of queries that are incorrectly
misclassified as outliers (i.e the false positives) and the
total number of normal data (the D-inliers, i.e. both the
false positives and the true negatives). The detection rate
is the ratio between the number of correctly detected
outliers (i.e. the true positives) and the total number of
outliers (the D-outliers, i.e. both the true positives and
the false negatives). In our approach the detection rate is
always 1 as we cannot have false negatives. Indeed, for
each query object q, wk(q, S) ≥ wk(q,D), being S ⊆ D.
This guarantees that, if a query object is a D-outlier, the
solving set correctly predicts it. On the other hand the
solving set could misclassify a query object as outlier,
though it is a normal one.
To be effective a solving set S should satisfy the

following desiderata:

• efficiency: S must be efficiently computable. We pro-
vide an algorithm that solves the ODP and, at
the same time, calculates a solving set with sub-
quadratic time requirements;

• smallness: the size of S must be small w.r.t. the size of
D. We present a thorough analysis of the solving set
size, on both real and synthetic data, showing that
in practice S is composed by a small percentage of
the objects of the data set;

• meaningfulness: the outliers detected using the solv-
ing set S must be comparable with those obtained
by using the entire data set D. We show that the
false positive rate obtained is negligible;

• consistency: S must guarantee to predict the correct
label for all the objects in D.

S actually does not guarantee this latter property for
those objects belonging to (S−{D1,k, . . . , Dn∗,k}). To this
aim, next we introduce the concept of robust solving set
that assures consistency.
Definition 4.3: Given a solving set S for the

ODP 〈D, dist, n, k〉 and an object p ∈ D, we say
that p is S-robust if the following holds: wk(p,D) < lb(S)
iff wk(p, S) < lb(S). We say that S is robust if, for each
p ∈ D, p is S-robust.
Thus, if S is a robust solving set for the

ODP 〈D, dist, n, k〉, then an object p, occurring in the
data set D, is a D-outlier for the OPP 〈D, p, dist, n, k〉 iff
it is an S-outlier. Hence, from the point of view of the
data set objects, the sets D and S are equivalent.
In the next section we analyze the complexity of the

task of computing a solving set and a robust solving set.

5 ON THE COMPLEXITY OF COMPUTING AN
ODP SOLVING SET

In general, given a set of objects D and fixed n and k,
there can be many different solving sets for D. We are
interested in finding a minimal solving set or, possibly,
the smallest solving set.
Definition 5.1: A solving set S for P = ODP 〈D, dist,

n, k〉 is minimal if every proper subset S′ of S is not a
solving set for P . A minimum solving set S for P is a
solving set S for P such that, for each solving set S′ for
P , |S| ≤ |S′|.
Proposition 5.2: A solving set S is minimal iff there

does not exist S′ ⊆ S, |S′| = |S| − 1, such that S′ is
a solving set.

Proof: We note that every superset of a solving set is
a solving set itself. Thus, if S is not minimal, it properly
contains a solving set S′′, then it must contain also a
solving set S′ ⊇ S′′ such that |S′| = |S| − 1.
A minimal solving set can be computed by exploiting

Proposition 5.2 as follows: let D = {p1, . . . , pN}; (i) set
S to D; (ii) for i = 1, . . . , N , if S − {pi} is a solving set,
then set S = S−{pi}. When the cycle terminates, the set
S contains a minimal solving set.
It is relevant to our task to characterize the complexity

of the problem of finding a minimum solving set. This



5

is closely related to the complexity of the following
decision problem.
Problem 5.3: Given a set D of N objects, a distance dist

on D, and three integer numbers n, k, and t, 1 ≤ n, k ≤
N , max{n, k} ≤ t ≤ N , the ODP Solving Set Problem
SSP 〈D, dist, n, k, t〉 is the following: does there exist a
solving set S for the ODP 〈D, dist, n, k〉 such that |S| ≤ t
?
Theorem 5.4: Let dist be a metric and k = 2. Then SSP

〈D, dist, n, k, t〉 is NP-complete.
Proof: Membership is straightforward. As for the

hardness, the proof is by reduction to a variant of the
well-known NP-complete problem Dominating Set Prob-
lem [19], variant that we called k-Dominating Set Problem.
Let G = (V,E) be an undirected graph, and let k, t ≤ |V |
be two positive integers. The k-Dominating Set Problem
is defined as follows: is there a subset U ⊆ V , called
k-dominating set of G, with |U | ≤ t, such that for all
v ∈ (V − U) there are distinct u1, . . . , uk ∈ U with,
∀i : 1 ≤ i ≤ k, {v, ui} ∈ E ? The Dominating Set
Problem corresponds to the 1-Dominating Set Problem.
The k-Dominating Set Problem can be proved to be NP-
complete by reducing the Dominating Set Problem to it
through the transformation described in Proposition 3.2
of [20]. Let U be a k-dominating set of G. For each node
v ∈ (V −U), let π1

U (v), . . . , π
k
U (v) denote k distinct nodes

of U such that, ∀i : 1 ≤ i ≤ k, {v, πi
U (v)} ∈ E.

Let G = (V,E) be an undirected graph, and let t ≤ |V |
be a positive integer. Without loss of generality, suppose
that each node of G has degree at least 2. Let DG be the
set of objects V ∪ O, where O is the set of new objects
{o1, . . . , on}. Let 0 < ǫ ≤ 1

3 . Define the distance distG on
DG as follows:

• ∀{u, v} ∈ E, distG(u, v) = 1− ǫ;
• ∀u, v ∈ V , u 6= v, {u, v} 6∈ E, distG(u, v) = 1 + ǫ;
• ∀u ∈ V ∪O, ∀v ∈ O, u 6= v, distG(u, v) = distG(v, u) =

2;
• ∀u ∈ DG, distG(u, u) = 0.

We note that ǫ ≤ 1
3 implies that 1 + ǫ ≤ 2(1 − ǫ).

This proves that distG is a metric. Indeed, the constraint
2 ≤ 2(1− ǫ), although not satisfied, is not relevant as for
each distinct u, v, w ∈ DG such that distG(u, v) = 2 and
distG(v, w) = 1 − ǫ, it holds that distG(u,w) = 2, and,
thus, distG(u, v) ≤ distG(u,w) + distG(w, v).
Furthermore, We note that O is the solution set of

the ODP 〈DG, distG, n, 2〉. In fact, (i) for each o ∈ O,
w2(o,DG) = 0 + 2 = 2, and, (ii) for each u ∈ V ,
w2(u,DG) = 0 + (1 − ǫ) = 1 − ǫ < 2, as, having u
degree at least 2, there exists an object v ∈ V such
that distG(u, v) = 1 − ǫ. Now we prove that G has a
2-dominating set of size t iff SSP 〈DG, distG, n, 2, n+ t〉
is a YES instance.
(⇒) Suppose that G has a 2-dominating set U such

that |U | ≤ t. We show that S = O ∪ U is a solving set
for ODP 〈DG, distG, n, 2〉. First, we note that lb(S) = 2,
as S ⊇ O. For each v ∈ (DG − S) = (V − U), as S ⊇
{π1

U (v), π
2
U (v)} then w2(v, S) ≤ (1− ǫ)+(1− ǫ) = 2−2ǫ <

2 = lb(S). Thus S is a solving set for 〈DG, dist, n, 2〉.

v
1

v
3

v
5

v
2

v
4

v
6

v
7

v
8

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

o
1

2

1-e

1+e

v
1

v
3

v
5

v
2

v
4

v
6

v
7

v
8

Fig. 3. A graph of eight nodes (left) and an example of
reduction described in Theorem 5.4, for n = 1 (right).

(⇐) The proof is by contradiction. Suppose that there
exists a solving set S for the ODP 〈DG, distG, n, 2〉 such
that |S| ≤ n + t. By Proposition 4.2, S ⊇ O. Assume
that there exists v ∈ (V − S) such that, for each distinct
v1, v2 ∈ (S ∩ V ) = U , either {v, v1} 6∈ E or {v, v2} 6∈ E.
Then w2(v, S) ≥ (1 − ǫ) + (1 + ǫ) = 2 ≥ lb(S), and S is
not a solving set: contradiction. It follows immediately
that U is a 2-dominating set for G such that |U | ≤ t.

Figure 3 shows an example of the reduction described in
Theorem 5.4, for n = 1. The matrix associated with the
distance distG is the following:

























v1 v2 v3 v4 v5 v6 v7 v8 o1

v1 0 1−ǫ 1+ǫ 1+ǫ 1−ǫ 1+ǫ 1−ǫ 1−ǫ 2
v2 1−ǫ 0 1−ǫ 1+ǫ 1+ǫ 1+ǫ 1+ǫ 1+ǫ 2
v3 1+ǫ 1−ǫ 0 1−ǫ 1−ǫ 1−ǫ 1−ǫ 1+ǫ 2
v4 1+ǫ 1+ǫ 1−ǫ 0 1+ǫ 1−ǫ 1+ǫ 1+ǫ 2
v5 1−ǫ 1+ǫ 1−ǫ 1+ǫ 0 1−ǫ 1+ǫ 1+ǫ 2
v6 1+ǫ 1+ǫ 1−ǫ 1−ǫ 1−ǫ 0 1−ǫ 1−ǫ 2
v7 1−ǫ 1+ǫ 1−ǫ 1+ǫ 1+ǫ 1−ǫ 0 1+ǫ 2
v8 1−ǫ 1+ǫ 1+ǫ 1+ǫ 1+ǫ 1−ǫ 1+ǫ 0 2
o1 2 2 2 2 2 2 2 2 0

























The set U = {v1, v3, v6} is a 2-dominating set of G,
thus, by Theorem 5.4, {v1, v3, v6, o1} is a solving set S
for the ODP 〈DG, dist, 1, 2〉, and, hence, the following
sub-matrix suffices to solve this problem:

























v1 v3 v6 o1

v1 0 1+ǫ 1+ǫ 2
v2 1−ǫ 1−ǫ 1+ǫ 2
v3 1+ǫ 0 1−ǫ 2
v4 1+ǫ 1−ǫ 1−ǫ 2
v5 1−ǫ 1−ǫ 1−ǫ 2
v6 1+ǫ 1−ǫ 0 2
v7 1−ǫ 1−ǫ 1−ǫ 2
v8 1−ǫ 1+ǫ 1−ǫ 2
o1 2 2 2 0

























Theorem 5.5: Let dist be a metric and let k > 2. Then
SSP 〈D, dist, n, k, t〉 is NP-complete.

Proof: Membership is straightforward. As for the
hardness the proof is by reduction to the k-Dominating
Set Problem. Let G = (V,E) be an undirected graph, and
let 2 < k ≤ |V | and t ≤ |V | be two positive integers.
Without loss of generality, suppose that each node of
G has degree at least k. Let DG be the set of objects
V ∪ O, where O is the set of new objects {o1, . . . , om},



6

with m = max{n, k}. Let

a = 1, b = 2c, and c =
2k − 2

2k + 1
.

Define the distance distG on DG as follows:

• ∀{u, v} ∈ E, distG(u, v) = c;
• ∀u, v ∈ V , u 6= v, {u, v} 6∈ E, distG(u, v) = b;
• ∀u, v ∈ O, u 6= v, distG(u, v) = a;
• ∀u ∈ V , ∀v ∈ O, distG(u, v) = distG(v, u) = b;
• ∀u ∈ DG, distG(u, u) = 0.

We note that 4
7 ≤ c < a = 1 < b = 2c < 2, and, thus,

(i) b ≤ 2c and (ii) b ≤ 2a. This proves that distG is a
metric. Indeed, the constraint (iii) a ≤ 2c, although not
satisfied, is not relevant since there not exist u, v, w ∈ DG

such that distG(u, v) = a and distG(v, w) = c.
We note that O contains the solution set of the

ODP 〈DG, distG, n, k〉. In fact, (i) for each o ∈ O,
wk(o,DG) = 0+a(k−1) = k−1, and, (ii) for each u ∈ V ,

wk(u,DG) = 0 + (k − 1)c = 2(k−1)2

2k+1 < k − 1, as, having u
degree at least k, there exist k−1 objects v1, . . . , vk−1 ∈ V
such that ∀i : 1 ≤ i ≤ k − 1, distG(u, vi) = c.
Now we prove that G has a k-dominating set of size

t iff SSP 〈DG, distG, n, k,m+ t〉 is a YES instance.
(⇒) Suppose that G has a k-dominating set U such

that |U | ≤ t. Now we show that S = O ∪ U is a solving
set for ODP 〈DG, distG, n, k〉. First, we note that lb(S) =
k − 1, as S ⊇ O. For each v ∈ (DG − S) = (V − U), as
S ⊇ {π1

U (v), . . . , π
k
U (v)} then wk(v, S) ≤ kc = k 2k−2

2k+1 <
k− 1 = lb(S). Thus S is a solving set for 〈DG, dist, n, k〉.
(⇐) The proof is by contradiction. Suppose that there

exists a solving set S for the ODP 〈DG, distG, n, k〉 such
that |S| ≤ m + t. By Proposition 4.2, S ⊇ O. Assume
that there exists v ∈ (V − S) such that, for each distinct
u1, . . . , uk ∈ (S ∩ V ) = U , it exists i : 1 ≤ i ≤ k, with
{v, ui} 6∈ E. Then wk(v, S) ≥ (k − 1)c + b = (k + 1)c =
2k+2
2k+1 (k − 1) > k − 1 = lb(S), and S is not a solving
set: contradiction. It follows immediately that U is a k-
dominating set for G such that |U | ≤ t.
We note that the solving set S = {v1, v3, v6, o1} of the

previous example is robust, as lb(S) = 2, w2(v1, DG) =
1 − ǫ, w2(v3, DG) = 1 − ǫ, w2(v6, DG) = 1 − ǫ, while
w2(v1, S) = 1 + ǫ < lb(S), w2(v3, S) = 1 − ǫ, and
w2(v6, S) = 1 − ǫ < lb(S), as it can be verified by using
the following matrix of distances:







v1 v3 v6 o1

v1 0 1+ǫ 1+ǫ 2
v3 1+ǫ 0 1−ǫ 2
v6 1+ǫ 1−ǫ 0 2
o1 2 2 2 0







It is easy to verify that, in the construction of the
Theorem 5.4, if there exists a solving set then it is robust.
Thus, searching for a robust solving set is as hard as
searching for a solving set.
Theorem 5.6: Let k > 1 and let dist be a metric. Then

the robust SSP 〈D, dist, n, k, t〉 is NP-complete.
Proof: The proof is analogous to that of Theorems

5.4 and 5.5.

Thus, from the complexity analysis above done the
following theorem finally holds.

Theorem 5.7: Let k > 1 and let dist be a metric. Then
computing a minimum cardinality (robust) solving set is
NP-hard.

6 ALGORITHMS FOR COMPUTING ODP SOLV-
ING SETS

In this section we describe three algorithms that com-
pute, respectively, a solving set, a robust solving set, and
a minimal robust solving set.

SolvingSet algorithm. The SOLVINGSET algorithm
solves the Outlier Detection Problem and calculates a
solving set for it. It computes the weights of the data set
objects by comparing each object with a selected small
subset of the overall data set, called Cand, and storing
its k neighbors found so far with respect to Cand. The
current weight of an object is thus an upper bound to its
true weight. The objects having weight lower than the n-
th greatest weight so far calculated are called non-active,
while the others are called active. At the beginning Cand
contains randomly selected objects from D, while, at
each step, it is built by selecting, among the active points
of the data set not already inserted in Cand during
previous steps, a mix of random objects and objects
having the maximum current weights.

During the execution, if an object becomes non active,
then it will not be considered any more for insertion in
the set Cand, because it can not be an outlier. As the
algorithm processes new objects, more accurate weights
are computed and the number of non-active objects
increases more quickly. The algorithm stops when no
other object can be examined, i.e. all the objects not yet
inserted in Cand are non-active, and thus Cand becomes
empty. The solving set is the union of the sets Cand
computed during each step.

The algorithm SOLVINGSET (see figure 4) receives
in input the data set Data, containing N objects, the
distance dist on Data, the number k of neighbors to
consider for the weight calculation, the number n of
top outliers to find, an integer m ≥ k, and a rational
number r ∈ [0, 1]. In particular, m represents the number
of objects to select from the data set for insertion in the
set Cand at each step of the algorithm, while r specifies
the trade-off between the number of random objects
((1 − r)m objects) and the number of objects having
the greatest current weights (rm objects) to select for
insertion in Cand.

Each object p of the data set is associated with a heap
NN [p], whose elements are pairs 〈q, δ〉, where q is an
object and δ a distance. Each heap stores the pairs having
the k smallest distances to p.

The function Sum(NN [p]), for a generic p, returns the
sum of the distances δ in the heap NN [p], that is, an
upper bound to the weight of the object.



7

Iteration #2 Iteration #3 Iteration #4 Iteration #5

Iteration #2 Iteration #3 Iteration #4 Iteration #5

Fig. 5. Two examples of execution of the SOLVINGSET algorithm for values of the parameter r = 1, top figures, and
r = 0.5, bottom figures. Black squares constitute points of SolvSet, while black circles constitute the set Cand.

SOLVINGSET(Data,dist, n, k,m, r) {
SolvSet = ∅;
Top = ∅;
Cand = RandomSelect(Data,m);
while (Cand 6= ∅) {
SolvSet = SolvSet ∪ Cand;
Data = Data− Cand;
for each (p in Cand)
for each (q in Cand) {
δ = dist(p, q);
UpdateMin(NN [p], 〈q, δ〉);
if (p 6= q) UpdateMin(NN [q], 〈p, δ〉);

}
NextCand = ∅;
for each (p in Data) {
for each (q in Cand)
if max{Sum(NN [p]), Sum(NN [q])} ≥ Min(Top)) {
δ = dist(p, q);
UpdateMin(NN [p], 〈q, δ〉);
UpdateMin(NN [q], 〈p, δ〉);

}
UpdateMax(NextCand, 〈p,Sum(NN [p])〉);

}
for each (q in Cand)
UpdateMax(Top, 〈q, Sum(NN [q])〉);

Cand = CandSelect(NextCand,Data−NextCand, r);
}

}

Fig. 4. The algoritm SOLVINGSET.

The function UpdateMin(NN [p], 〈q, δ〉) updates the
heap associated with p, by substituting the pair 〈s, σ〉,
where σ is the maximum distance in NN [p], with 〈q, δ〉,
in the case δ < σ.
Furthermore, the algorithm uses two heaps Top and

NextCand, of, respectively, n and m data set objects.
The objects stored in Top are those having the greatest
true weights computed so far, while those contained in

NextCand are the objects of Data having the greatest
weight upper bound. Both the heaps thus store pairs
〈p, σ〉, where p is an object and σ is Sum(NN [p]).

The function Min(Top) returns the smallest value σ
associated with a pair stored in the heap Top. Thus it is
a lower bound to the weight of the n-th outlier of Data. This
means that the objects q of Data having weight upper
bound Sum(NN [q]) less than Min(Top) cannot belong to
the solution set.

The function UpdateMax(H, 〈p, Sum(NN [p])〉) updates
the heap H , by substituting the pair 〈s, σ〉, where
σ is the minimum weight upper bound in H , with
〈p, Sum(NN [p])〉, in the case Sum(NN [p]) > σ.

Cand is initialized by picking at random m elements
from the data set and it must contain those points of
Data for which the exact weight has been computed. To
this end the objects of Cand are compared with all the
points in Cand ∪ Data. This is realized by splitting the
comparison with the objects in Cand and in Data−Cand
in two steps in order to avoid useless distance compu-
tations. Thus, the first double cycle compares the objects
of Cand with themselves and, for each of them, updates
the associated heap through the function UpdateMin. In
the second double cycle the distance between a point
p in Data and a point q in Cand is computed only if
at least one of the two can be an outlier, that is when
the maximum between their upper bounds Sum(NN [p])
and Sum(NN [q]) to their weights is greater than the
lower bound Min(Top). Thus, at the end of this double
cycle, the objects in Cand have weight upper bound
equal to their true weight, and they can be inserted in
the heap Top.

It remains to see how the function CandSelect pop-
ulates the set Cand for the next iteration. This function
builds a set composed by rm active objects in NextCand



8

and by (1 − r)m active objects in Data but not in
NextCand. We note that NextCand contains the m
objects of Data having the greatest weight upper bound.
If there are no more active points, then CandSelect

returns the empty set and the algorithm stops: Top
contains the solution set and SolvSet is a solving set
for the ODP .
The algorithm SOLVINGSET has worst case time com-

plexity O(|D|2), but practical complexity O(|D|1+β),
with β < 1. Indeed, let S be the solving set computed
by the algorithm, then it performed |D|1+β = |D| · |S|

distance computations, and thus β = log |S|
log |D| .

Figure 5 shows two examples of execution of the
algorithm SOLVINGSET on the data set of Figure 1. The
first row reports the iterations 2 to 5 of the algorithm
for n = 10, k = m = 6, and r = 1.0, while the
second row reports the iterations 2 to 5 for n = 10,
k = m = 6, and r = 0.5. Big filled circles represent
the points of the set Cand during the current iteration,
while big filled squares represent the points composing
the set SolvSet at the beginning of the current iteration
(see Figure 4). During the first iteration, the algorithm
SOLVINGSET randomly selects six points (the squares
in the left top and bottom figures), and then the six
points to be inserted in Cand during the next iteration
are computed (these points are the circles in the left top
and bottom figures). Notice that the points to be inserted
in Cand during the next iteration selected for r = 1.0
(top row) are always those more distant from the current
solving set SolvSet, while for r = 0.5 (bottom row) they
are a mix of randomly selected points and points whose
distance to SolvSet is maximum. For example, in the top
left figures, the six circles are among the most outlying
objects in the data set, while in the bottom left figure
only three circles are among these objects, the other three
circles are picked within the two distributions. We will
discuss in the following section how the parameter r
affects the convergence of the algorithm, but here we
can observe that higher values of r bias the algorithm to
insert outliers early in the solving set SolvSet.

RobustSolvingSet algorithm. The solving set S com-
puted by the SOLVINGSET algorithm is not robust. Now
we show how a robust solving set R containing S
can be computed with no additional asymptotic time
complexity. The following proposition states a necessary
and sufficient condition that a solving set S must satisfy
in order to be robust.
Proposition 6.1: A solving set S for the

ODP 〈D, dist, n, k〉 is robust iff for each
p ∈ (S − {D1,k, . . . , Dn∗,k}), wk(p, S) < lb(S).

Proof: We note that each object in {D1,k, . . . , Dn∗,k}∪
(D − S) is S-robust by definition of solving set. Thus,
as the objects p in (S − {D1,k, . . . , Dn∗,k}) are such that
wk(p,D) < lb(S), then it must be the case that wk(p, S)
is less than lb(S).
By Proposition 6.1 we have to verify that, for each

object p of S, if the weight of p in D is less than lb(S),

ROBUSTSOLVINGSET(Data,dist, n, k,m, r) {
SolvSet = SOLVINGSET(Data,dist, n, k,m, r);
RobuSolvSet = SolvSet;
for each (p in SolvSet)
if (Sum(NN [p]) < Min(Top)) {
RNN = ∅;
for each (q in RobuSolvSet)
UpdateMin(RNN, 〈q,dist(p, q)〉);

if (Sum(RNN) ≥ Min(Top)) {
DNN = Sort(NN [p]−RNN);
j = 1;
while (Sum(RNN) ≥ Min(Top)) {
〈q, δ〉 = DNN [j];
UpdateMin(RNN, 〈q, δ〉);
RobuSolvSet = RobuSolvSet ∪ {q};
j = j + 1;

}
}
NN [p] = RNN ;

}
return(RobuSolvSet);

}

Fig. 6. The algorithm ROBUSTSOLVINGSET.

then the weight of p in S remains below the same thresh-
old. Thus, the algorithm ROBUSTSOLVINGSET does the
following: (i) initialize the robust solving set R to S; (ii)
for each p ∈ S, if wk(p,D) < lb(S) and wk(p,R) ≥ lb(S),
then select a set C of neighbors of p coming from D−S,
such that wk(p,R∪C) < lb(S), and set R toR∪C. We note
that the objects C added to R are certainly R-robust, as
they are S-robust by definition of solving set and R ⊇ S.
Furthermore, we note that the objects C satisfying the
above property can be efficiently retrieved, as they are
always stored in the heap NN [p].

In particular, the algorithm (see Figure 6) uses the
heap RNN to store, for each object p of the solving
set SolvSet, such that (Sum(NN [p]) < Min(Top)), its k
nearest neighbors in the robust solving set RobuSolvSet.
If Sum(RNN) is greater than Min(Top) then p is not
RobuSolvSet-robust. In this case, the pairs 〈q, δ〉 occur-
ring in NN [p] but not in RNN (i.e. the nearest neighbor
of p in Data but not in SolvSet) are stored in the array
DNN and then sorted w.r.t. the field δ, and, finally,
the set RobuSolvSet is augmented picking one object q
at time from DNN until wk(p,RobuSolvSet) decreases
below the threshold Min(Top). Notice that at the end of
ROBUSTSOLVINGSET, in the matrix NN there are only
objects coming from the robust solving set.

The size of the set R, computed by the ROBUSTSOLV-
INGSET algorithm, is upper bounded by k|S|, even if
it is unlikely that this size is reached in practice, as
confirmed by experimental results described in the next
section. If we ignore the contribution of the subprogram
SOLVINGSET, then ROBUSTSOLVINGSET has worst case
time complexity O(|R| · |S|). Thus, as |R| ≤ |D| (and we
expect that |R| ≪ |D| in practice), the time complexity
of ROBUSTSOLVINGSET is dominated by the complexity
of the subprogram SOLVINGSET.



9

MINIMALROBUSTSOLVINGSET(Data,dist, n, k,m, r) {
RobuSolvSet=ROBUSTSOLVINGSET(Data,dist, n, k,m, r);
MinRobuSolvSet = RobuSolvSet;
for each (p in RobuSolvSet)
if (Sum(NN [p]) < Min(Top)) {
RemoveObject = true;
for each (q in Data)
if (Sum(NN [q]) < Min(Top) and Member(NN [q], p))
{
MNN = ∅;
for each (r in (MinRobuSolvSet − {p}))
UpdateMin(MNN, 〈r,dist(q, r)〉);

if (Sum(MNN) < Min(Top))
NN [q] = MNN ;

else {
RemoveObject = false;
break;

}
}

if (RemoveObject)
MinRobuSolvSet = MinRobuSolvSet − {p};

}
}
return(MinRobuSolvSet);

}

Fig. 7. The algorithm MINIMALROBUSTSOLVINGSET.

MinimalRobustSolvingSet algorithm. The set R com-
puted by ROBUSTSOLVINGSET is robust, but not mini-
mal. Thus, optionally, we can minimize the robust solv-
ing set R to obtain a minimal robust solving set M .
The algorithm MINIMALROBUSTSOLVINGSET is

shown in Figure 7 and computes the set M . First,
M is set equal to R. Then, for each object p in R
having weight upper bound less than lb(S) (recall
that, by Proposition 4.2, a solving set must contain
the solution set), the algorithm checks if M − {p} is a
robust solving set, i.e. if, for each q of Data such that
wk(q,M) ≤ lb(S), it holds that wk(q,M − {p}) ≤ lb(S).
If it is the case, then p is removed from M . Notice that
the algorithm avoids the computation of wk(q,M −{p})
for the objects q that do not have p occurring in NN [q].
During these operations the heap NN [q] is updated
to the heap MNN , containing the k nearest neighbors
of q in M − {p}, even if we are not sure that p will
be removed from M . We point out that this early
update does not lead to any inconsistency, as, to work
properly, the algorithm requires that the property
“Sum(NN [q]) < lb(M) iff wk(q,D) < lb(M)” holds, and
the property is preserved by this update. The worst
case complexity of MINIMALROBUSTSOLVINGSET is
O(|R|2 · |D|), so this is the most expensive task among
the three considered, but it is worth to note that it is
unlikely that this number of operations is needed in
practice.

7 EXPERIMENTAL RESULTS

In this section we present experiments on synthetic and
real data sets to evaluate the effectiveness of our ap-

r |S| |R| |M |
0.00 13,378 13,778 5,939
0.25 5,410 6,455 5,543
0.50 5,092 6,091 5,505
0.75 5,123 6,080 5,567
1.00 5,588 6,519 5,665

TABLE 2
Solving set size |S|, robust solving set size |R|, and

minimal robust solving set size |M | for the example of
Figure 8.

proach. In particular, first we consider a two dimensional
synthetic data set to permit the graphical visualization of
the various concepts introduced, to study the influence
of the parameter r on the method, and to compare the
prediction quality obtained answering the OPP using
solving sets with those obtained exploiting random sam-
ples of the data set (Section 7.1). Then, we use a synthetic
and four real high-dimensional data sets to study how
the size of the solving set scales w.r.t. the parameters
n and k (Section 7.2), and to analyze the false positive
rate (Section 7.3). Finally, we use four real labelled data
sets to compare the accuracy of a solving set and of
the overall corresponding data set in separating data
from a certain class – assumed to represent normal data,
from data of the other classes – assumed to represent
exceptions (Section 7.4). Some considerations arguing the
applicability of the approach close the section (Section
refdisc).

7.1 Two dimensional example

The data set, shown in Figure 8(a) together with the top
n = 200 outliers for k = 20 (the dark stars), is com-
posed by N = 100,000 points in the square [−2.5, 2.5]2.
We computed these outliers using the SOLVINGSET al-
gorithm. In particular, we executed the algorithm for
r ∈ {0, 0.25, 0.5, 0.75, 1.0} and m = 20.
Figure 8(b) shows the value Min(Top) per iteration,

while Figure 8(c) shows the number of active points
per iteration of the five executions considered. It is clear
that the value Min(Top) approaches lb(S) as quickly as
r approaches the value 1. Nevertheless, we obtained
the best results, in terms of number of iterations and,
hence, of solving set size |S|, for values of r belonging
approximatively to the range [0.5, 0.75].
Table 2 shows the solving set size |S|, the robust solv-

ing set size |R| computed using ROBUSTSOLVINGSET,
and the minimal robust solving set size |M | computed
using MINIMALROBUSTSOLVINGSET.
Figures 9(a), 9(b) and 9(c) depict the solving set points

(the grey) for r = 0, r = 0.5, r = 1.0, respectively. The
dark points represent the points added to the solving
set to make it robust. We note that these points are
distributed along the boundaries of the data set region.
From these figures we can observe that, for r = 0.5



10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(a) Data set and outliers

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(b) n−th outlier weight vs iteration number

Iteration number

n
−

th
 o

u
tl
ie

r 
w

e
ig

h
t

r=0 

r=0.25 r=
0.
75

 

r=
0.
5 

r=
1
 

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Iteration number

A
c
ti
v
e

 o
b

je
c
ts

 n
u

m
b

e
r

(c) Active object number for different values of r

r=
0
.2

5
 

r=
0
.5

 

r=
1
 

r=
0
.7

5
 

r=
0 

Fig. 8. The example data set.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(a) Solving and robust sets for r=0

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(b) Solving and robust sets for r=0.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(c) Solving and robust solving set for r=1

Fig. 9. Solving sets (gray points) and robust solving sets (both gray and dark points) found for the example data set.

the solving set points appear to be near uniformly
distributed on the data set shape, for r = 0 their density
appears to be proportional to the density of the data set
points in the same regions, while for r = 1.0 they appear
to form a lot of small clusters having size related to the
value of m, separated by empty regions having diameter
related to the value lb(S).

To test the quality of the approximation obtained using
a solving set instead of the entire data set, we generated
20,000 random queries in the square [−2.5, 2.5]2. We
compared the robust solving set R (|R| = 6,091, about
the 6.1% of the data set) computed for r = 0.5, with
a set T of |R| points extracted at random by D. In
particular, in Figure 10(a), black points are true negatives
(both D-inliers and R-inliers), light-gray points are true
positives (both D-outliers and R-outliers), while the gray
points are false positives (D-inliers but R-outliers). It
is clear from the figure that the false positives accu-
mulate along the boundaries of the accepting region,
thus they represent points belonging to the region of
transition between the inside and the outside of the data
set distribution. In Figure 10(b), black points are both
D-inliers and T -inliers, light-gray points are both D-
outliers and T -outliers, while gray points are D-inliers
but T -outliers. This figure shows the superiority of the
approach based on the computation of a solving set w.r.t.

using as reference set a random sample of the data set.
Finally, Figure 10(c) shows the weight of these queries
computed w.r.t. the data set D (black curve), the robust
solving set R (gray curve), and the random set T (light
gray curve). The closeness of the first two curves points
out that the weight of the queries computed w.r.t. R is
almost the same of that computed w.r.t. D. The curve
relative to the minimal robust solving set is very near to
that of the robust solving set, so we do not report this
curve for clarity.

In the two dimensional data set example, we con-
sidered a query set containing a number of outliers
much greater than the number of inliers in order to
uniformly fill the square [−2.5, 2.5]2. In real situations
outliers are only a small percentage of the query set.
Thus, in this example it is not meaningful to consider
the false positive rate. However, we note that the false
positive obtained using the robust solving set R are 590,
i.e. the 2.95% of the queries, the false positive obtained
using the minimal robust solving set M (for r = 0.5,
|M | = 5,505, about the 5.5% of the data set) are 655, i.e.
the 3.27% of the queries, while the false positive obtained
using the random set T are 2,011, i.e. the 10.6% of the
queries.

Furthermore, the value wk(q, S) approximates the
value wk(q,D) much better than wk(q, T ). In particular,



11

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(a) Prediction using a robust solving set

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
(b) Prediction using a random set

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

35

Query

W
e

ig
h

t

(c) Query weights computed using (1) D, (2) R and (3) T 

(1) 

(2) 

(3) 

lb(S)

Fig. 10. Outlier prediction on the example data set.

wk(q, S) is very close to wk(q,D) when q is an outlier,
while the difference between these two values becomes
notable when q is an inlier. We note that this behavior is
exactly the expected one. Indeed, the data set reduction
operated computing a solving set is obtained at the
expense of a poor approximation of the weight of the
objects belonging to the data set that are not outliers.
Obviously, this is not a problem, as we want to use the
solving set to detect outliers. Moreover, the random set T
behaves better than R on the inliers, as most of its points
come from the highly populated regions of D, but its
weight approximation is very poor on the outliers and
on the inliers coming from the low density populated
regions of D.

7.2 Solving set size

For this and the following experiments we considered
five data sets. The Gaussian data set G is a collec-
tion of 1,000,000 points on the plane generated from
a normal distribution having standard deviation 1. The
ColorHistogram CH , CoocTexture CT , and ColorMoments
CM data sets are composed by 68,040 points of R32, R16,
R

9 respectively, and represent image features extracted
from a Corel image collection1. The Landsat data set
L is a collection of 275,465 points of R

60 representing
normalized feature vectors associated to tiles of a col-
lection of large aerial photos2. Figures 11(a)-(e) show
the sizes |S| of the solving sets (dashed curves) and the
sizes |R| of the robust solving sets (solid curves) obtained
considering the five data sets for various values of n and
k (m = k and r = 0.5 in all the experiments) and several
values |D| of the data set size, using the Euclidean
distance. We are going to discuss next the size of the
minimal robust solving set. To vary the data set size, we
considered in each experiment the data set obtained by
picking distinct objects at random from the original data

set. It is clear from these figures that the ratios |S|
|D| and

|R|
|D| decrease dramatically with increasing values of |D|.

1. See http://kdd.ics.uci.edu/databases/CorelFeatures/
CorelFeatures.html for more information.
2. See http://vision.ece.ucsb.edu for a detailed description.

Furthermore, we note that in these experiments the size
|R| of the robust solving set is less than two times the
size |S| of the associated solving set, even when k = 100,
i.e. much less than the worst case k|S| previously stated.

Figure 12 depicts the execution times of the algorithms
SOLVINGSET and ROBUSTSOLVINGSET on the data of
Figure 11. The figures show that the time trend of
the algorithms roughly follows the product |S| · |D|, as
expected according to the analysis done in the previous
section. Furthermore, we note that the time required to
compute R from S is negligible.

Both SOLVINGSET and ROBUSTSOLVINGSET algo-
rithms return a (robust) solving set nondeterministically
chosen among all the possible (robust) solving sets. But,
a data set has an exponential number of (robust) solving
sets, thus it is interesting to study how the size of the
(robust) solving set computed varies among different
executions of the algorithm on the same values for the
input parameters.

Figure 13 on the left shows minimum and maximum
sizes of the solving set (|S|min and |S|max), of the robust
solving set (|R|min and |R|max), and of the minimal
robust solving set (|M |min and |M |max), obtained on
random samples of the ColorHistogram data set, with
parameters n = 100, k = 25, m = 25, r = 0.5. Each
execution is repeated ten times, thus minimum and
maximum values are taken over the ten executions. We
note that the sizes of the computed solving sets are
within the ±1% of the mean size. These results suggest
that the proposed algorithms guarantee to compute a
solving set whose size is stable. As for the size of the
minimal robust solving sets we note that it is reasonably
smaller than that of the robust solving set, though greater
than the solving set. We will compare the classification
accuracy of these sets in the following.

Figure 13 on the right, reports the mean execution
times of the algorithms SOLVINGSET, ROBUSTSOLV-
INGSET, and MINIMALROBUSTSOLVINGSET on the ex-
periments on the left. The time required to compute
the minimal robust solving set, as expected, can be
sensibly higher than the time required to compute a
robust solving set. Nevertheless, we can note that the



12

200000 400000 600000 800000 1e+006

1000

1500

2000

2500

3000

(a) Gaussian data set, D

15000 30000 45000 60000

1000

2000

3000

4000

(b) ColorHistogram data set, D

50000 100000 150000 200000 250000

500

1000

1500

2000

(c) Landsat data set, D

15000 30000 45000 60000

400

600

800

1000

(d) CoocTexture data set, D

15000 30000 45000 60000

1000

2000

3000

(e) ColorMoments data set, D

|R| − n=  10, k= 100
|S| − n=  10, k= 100
|R| − n=  50, k= 100
|S| − n=  50, k= 100
|R| − n= 100, k= 100
|S| − n= 100, k= 100

Fig. 11. Scaling analysis of the ODP solving sets sizes. The x-axis represents the size of the data set, while the y-axis
the size of the (robust) solving set.

actual execution time of MINIMALROBUSTSOLVINGSET
is clearly better than the worst case stated in the previous
section. Indeed, if TS is the time needed to compute the
solving set, the time needed to compute the minimal
robust solving set is roughly |R| · TS , that is for the data
set considered about three orders of magnitude greater
than TS , while the measured execution time is much less
than the worst case, though significantly greater than TS .

7.3 False positive rate

To test the quality of the outliers detected using the
solving set, for each of the five data sets described above,
we considered as data set (D in the following) a random
sample composed by the 90% of the original data set
and then we used the remaining 10% as query set (Q in
the following). We computed a solving set S, a robust
solving set R, and a minimal robust solving set M of
each data set, for n ∈ {10, 50, 100}, k ∈ {10, 50, 100},
m = k, r = 0.5, and dist the Euclidean distance. Table
3 reports the cardinality |S| of the solving set S, the
cardinality |R| of the robust solving set R, the cardinality
|M | of the minimal robust solving set M , and the false
positive rates obtained using S, R, and M respectively,
to answer the OPP 〈D, q, dist, n, k〉 on the objects q of Q.
As the table shows, the size of the robust solving set is
slightly higher than that of the solving set. Clearly, the
minimal robust solving set is always smaller than the

robust solving set, while it seems there is no relation
between the size of the minimal robust solving set and
that of the solving set. It is worth to note that the
difference between the sizes of the minimal robust and
robust solving sets is, in some cases, very small.
The differences of the false positive rates obtained

for all the three cases are negligible, though the robust
solving set gives better results. The table points out that
the minimal robust solving set is smaller than the robust
one, but the latter guarantees a better accuracy. By this
observation we can conclude that the choice of comput-
ing the minimal robust solving set is reasonable only
if the space requirements are more important than the
time requirements, considering that the robust solving
set provides a good compromise between accuracy and
size. Finally we can observe that the table shows that
the approach ensures a very good quality of the outliers
obtained by using one of the three types of solving sets.
In fact, for all the data sets considered, the false positive
rate is very low and in one case, the CoocTexture data set
when n = 10, it is always zero.

7.4 Evaluation through ROC Analysis

The outlier detection technique described in this work
is unsupervised as it can be applied to training data
that has no labels associated. Nevertheless, as the solving
set represents a model of the overall data set, it makes



13

200000 400000 600000 800000 1e+006

1000

2000

3000

(a) Gaussian data set, D

15000 30000 45000 60000

200

400

600

800

(b) ColorHistogram data set, D

50000 100000 150000 200000 250000

500

1000

1500

2000
(c) Landsat data set, D

15000 30000 45000 60000

50

100

150

(d) CoocTexture data set, D

15000 30000 45000 60000

100

200

300

(e) ColorMoments data set, D

|R| − n=  10, k= 100
|S| − n=  10, k= 100
|R| − n=  50, k= 100
|S| − n=  50, k= 100
|R| − n= 100, k= 100
|S| − n= 100, k= 100

Fig. 12. Scaling analysis of the algorithms SOLVINGSET and ROBUSTSOLVINGSET. The x-axis represents the size of
the data set, while the y-axis the execution time in seconds.

0 1 2 3 4 5 6 7

x 10
4

1000

1500

2000

2500

3000

3500

4000

Random sample size

So
lv

in
g 

se
ts

 s
iz

e

|R|
max

|R|
min

|M|
max

|M|
min

|S|
max

|S|
min

0 1 2 3 4 5 6 7

x 10
4

10
1

10
2

10
3

10
4

10
5

Random sample size

C
om

pu
ta

tio
n 

tim
e 

[s
ec

]

M
R
S

Fig. 13. On the left: minimum and maximum sizes of the solving set (|S|min and |S|max), of the robust solving set
(|R|min and |R|max), and of the minimal robust solving set (|M |min and |M |max). On the right: time required to compute
the solving sets on the left.



14

n k |S| f.p. |R| f.p. |M | f.p.
[%] [%] [%]

10 10 510 0.00 521 0.00 412 0.00
10 50 963 0.00 977 0.00 710 0.00
10 100 1525 0.01 1550 0.00 1172 0.01
50 10 1160 0.01 1177 0.00 995 0.01

G 50 50 1572 0.01 1609 0.00 1321 0.01
50 100 2208 0.01 2267 0.00 1851 0.01
100 10 1970 0.01 1992 0.01 1692 0.01
100 50 2159 0.01 2232 0.01 1911 0.01
100 100 2852 0.02 2951 0.01 2519 0.01
10 10 1657 1.09 1732 0.94 1548 1.22
10 50 1234 0.24 1313 0.16 1207 0.29
10 100 1424 0.22 1540 0.18 1437 0.21
50 10 3009 2.23 3167 1.75 2805 2.43

CH 50 50 2437 1.06 2699 0.65 2529 0.75
50 100 2414 1.09 2661 0.54 2601 0.56
100 10 3972 3.04 4218 2.34 3717 3.35
100 50 3317 2.25 3783 1.09 3606 1.25
100 100 3471 1.87 3902 0.93 3796 1.00
10 10 769 0.08 791 0.07 670 0.13
10 50 658 0.03 697 0.02 610 0.02
10 100 832 0.03 882 0.02 764 0.02
50 10 1599 0.30 1677 0.24 1453 0.35

L 50 50 1206 0.10 1368 0.05 1259 0.07
50 100 1425 0.10 1603 0.05 1511 0.05
100 10 2200 0.45 2314 0.38 1991 0.45
100 50 1633 0.27 1883 0.12 1780 0.13
100 100 1822 0.25 2118 0.10 2054 0.11
10 10 1142 0.47 1200 0.40 1081 0.60
10 50 1107 0.35 1215 0.16 1150 0.24
10 100 1522 0.06 1540 0.06 1229 0.09
50 10 2143 1.13 2252 0.97 2011 1.35

CM 50 50 1951 0.88 2208 0.51 2121 0.59
50 100 2326 0.76 2623 0.41 2595 0.41
100 10 3012 1.75 3157 1.42 2838 1.99
100 50 2598 1.55 2986 0.78 2890 0.85
100 100 2935 1.40 3372 0.75 3355 0.75
10 10 95 0.01 96 0.01 68 0.04
10 50 228 0 230 0 129 0
10 100 428 0 428 0 200 0
50 10 305 0.07 322 0.04 250 0.09

CT 50 50 468 0 478 0 373 0
50 100 721 0.01 729 0.01 524 0.01
100 10 663 0.38 692 0.29 585 0.43
100 50 801 0.29 844 0.24 768 0.25
100 100 988 0.22 1020 0.21 920 0.24

TABLE 3
Solving set sizes and false positives rates (f.p.%).

sense to compare the accuracy of the solving set with
the accuracy of the data set in separating data from a
certain class C – assumed to represent normal behavior
– from data from other classes – assumed to represent
abnormality. Thus, in this section we deal with labelled
data set. We note that, in this novel context, true/false
negative/positive objects must be defined by comparing
the labels predicted w.r.t. S (or D) with the labels L
associated with the objects, as shown in Table 4.
Accordingly to the new definitions, a false positive

rate and a detection rate value can be associated with
the dataset D, while the detection rate of the solving set
has, in general, a value in the interval [0,1].

Predicted label w.r.t. S (or D)
S(or D)-inlier S(or D)-outlier

Class L = C true negative false positive
label L L 6= C false negative true positive

TABLE 4
Classification of the query objects.

We computed the robust solving set for four real data
sets and then compared the false positive rate for normal
query objects and the detection rate for outlier query
objects when using the overall data set against using the
robust solving set to determine the weight of each query.
We considered four labelled real data sets well known
in the literature: Wisconsin Diagnostic Breast Cancer [21],
Shuttle [22], DARPA 1998, and the KDD CUP 99 data sets.
The first two data sets are used for classification tasks,
thus we considered the examples of one of the classes
as the normal data and the others as the exceptional
data. The last two come from the DARPA 1998 Intrusion
Detection Evaluation Data [23] and have been extensively
used to evaluate intrusion detection algorithms. Next we
briefly describe the characteristics of these data sets:

• Breast cancer: The Wisconsin Diagnostic Breast Can-
cer data set is composed by instances representing
features describing characteristics of the cell nuclei
present in the digitalized image of a breast mass.
Each instance has one of two possible classes: benign,
that we assumed as the normal class, or malignant.

• Shuttle: The Shuttle data set was used in the Euro-
pean StatLog project which involves comparing the
performances of machine learning, statistical, and
neural network algorithms on data sets from real-
world industrial areas [22]. This data set contains
9 attributes all of which are numerical. The data is
partitioned in 7 classes, namely, Rad Flow, Fpv Close,
Fpv Open, High, Bypass, Bpv Close, and Bpv Open.
Approximately 80% of the data belong to the class
Rad Flow, that we assumed as the normal class.

• DARPA: The DARPA 1998 Intrusion Detection Eval-
uation Data consists of network connection records
of several intrusions simulated in a military network
environment. The TCP connections have been elab-
orated to construct a data set of 23 features, one
of which identifying the kind of attack: DoS, R2L,
U2R, and PROBING. We used the TCP connec-
tions from 5 weeks of training data.

• KDD Cup: This data set comes from the 1998 DARPA
Intrusion Detection Evaluation Data [23] but the
records are described by 41 characteristics, of which
3 categorical, which we excluded.

Breast Cancer and Shuttle data sets are composed by
a training set and a test set. We merged these two
sets obtaining a unique labelled data set. From each
labelled data set, we extracted three unlabelled sets: a
set of normal examples and a set of normal queries, both



15

Data set name Attributes Normal Normal Exceptional
examples queries queries

Shuttle 9 40,000 500 1,244

Breast cancer 9 400 44 239

DARPA 23 24,051 9,620 18,435

KDD Cup 38 97,277 3,029 3,235

TABLE 5
The data used in the experiments.

containing data from the normal class, and a set of
exceptional queries, containing all the data from the other
classes. Table 5 reports the sizes of these sets.

We then used the normal examples to find the
robust solving set R for the ODP 〈D, dist, n, k〉 and
the normal and exceptional queries to determine the
false positive rate and the detection rate when solving
OPP 〈D, q, dist, n, k〉 and OPP 〈R, q, dist, n, k〉. We com-
puted a robust solving set for values of the parameter
n ranging from 0.01|D| to about 0.10|D| or 0.20|D| (i.e.
from the 1% to about the 10% or 20% of the normal
examples set size) and using r = 0.75 and m = k in
all the experiments and the Euclidean distance as metric
dist.

The performance of the method was measured by
computing the ROC (Receiver Operating Characteristic)
curves [24] for both the overall data set of normal
examples, denoted by D, and the robust solving set.
The ROC curves show how the detection rate changes
when specified false positive rate ranges from the 0%
to the 100% of the normal examples set size. We have
a ROC curve for each possible value of the parameter
k. Let QI denote the normal queries associated with the
normal example set D, and QO the associated excep-
tional queries. For a fixed value of k, the ROC curve is
computed as follows. Each point of the curve for the

sets D and R resp. is obtained as ( |IO|
|QI |

, |OO|
|QO| ), where

IO is the set of queries q of QI that are outliers for the
OPP 〈D, q, dist, n, k〉 and OPP 〈R, q, dist, n, k〉 resp., and
OO is the set of queries of QO that are outliers for the
same problems.

Figure 14 reports the ROC curves together with the
curves of the robust data set sizes, i.e. the curves com-
posed by the points (false positive rate,|R|). For each
set we show two curves, associated with two different
values of k. Dashed lines are relative to the normal
examples set (there called data set), while solid lines are
relative to the robust solving set.

The ROC curve shows the tradeoff between the false
positive rate and the detection rate. The closer the curve
follows the left and the top border of the unit square,
the more accurate the method. Indeed, the area under
the curve is a measure of the accuracy of the method in
separating the outliers from the inliers. Table 6 reports
the approximated areas of all the curves of Figure 14 (in
order to compute the area we interpolated the missing
points exploiting the fact that the curve starts in (0, 0)

Data set name k ROC area ROC area
data set solving set

Shuttle (High class) 25 0.974 0.99

100 0.959 0.964

Shuttle (other classes) 25 0.996 0.994

100 0.996 0.995

Breast cancer 5 0.987 0.976

10 0.986 0.975

DARPA 500 0.883 0.883

1000 0.894 0.894

KDD Cup 10 0.939 0.941

25 0.954 0.956

TABLE 6
The areas of the ROC curves of Figure 14 .

and stops in (1, 1)). It is worth to note that the best values
obtained using the robust solving set vary from 0.894 to
0.995, i.e. they lye in the range of values characterizing
excellent diagnostic tests.
We recall that, by definition, the size |R| of the robust

solving set R associated with a data set D is greater than
n. Furthermore, in almost all the experiments n/|D| ≃
false positive rate. Thus, the relative size of the robust
solving set |R|/|D| is greater than the false positive rate.
We note that in the experiments reported, |R| can be
roughly expressed as αn, where α is a small constant
whose value depends on the data set distribution and on
the parameter k. The curves show that using the robust
solving set to predict outliers, not only improves the
response time of the prediction over the entire data set,
since the size of the solving set is a fraction of the size of
the data set, as figures 14 point out, but also guarantees
the same or a better response quality than the overall
data set.
Next we briefly discuss the experiments on each data

set.
As regard the Breast cancer data set, we note that the

robust solving set for k = 5 composed by about the 10%
(18% resp.) of the data set, reports a false positive rate
4.5% (6.8% resp.) and detection rate 97.5% (100% resp.).
For the Shuttle data set, the robust solving set for

k = 25 composed by about the 12% of the data set,
guarantees a false positive rate 1% and a detection rate of
the 100% on the classes Fpv Close, Fpv Open, Bypass, Bpv
Close, and Bpv Open. Furthermore, the robust solving set
sensibly improves the prediction quality over the data
set for the class High.
These two experiments point out that the method can

behave very well also for binary classification problems
when one of the two classes is assumed normal and the
other abnormal, and for the detection of rare values of
the attribute class in a completely unsupervised manner,
which differs from the supervised approaches like [25]
that searches for rare values in a set of labelled data.
As regard the DARPA data set, a 90% of detection rate

is obtained by allowing the 10% of false positive. In this
case we note that the size of the solving set is not small
since higher values of the parameter k are needed to



16

2 4 6 8 10 12
92

93

94

95

96

97

98

99

100

Breast cancer − ROC curves: dataset (dashed line)
and robust solving set (solid line)

False positive rate [%]

D
e

te
c
ti
o

n
 r

a
te

 [
%

]

k=5
k=10

2 4 6 8 10 12
8

10

12

14

16

18

20

22

24
Breast cancer − Robust solving set size

False positive rate [%]
R

o
b

u
s
t 

s
o

lv
in

g
 s

e
t 

re
la

ti
v
e

 s
iz

e
 [

%
]

k=5
k=10

0 2 4 6 8 10 12 14
82

84

86

88

90

92

94

96

98

100

Shuttle − ROC curves: dataset (dashed line) 
and robust solving set (solid line)

False positive rate [%]

D
e

te
c
ti
o

n
 r

a
te

 [
%

]

Fpv Close, Fpv Open, Bypass, Bpv Close, Bpv Open

High

High

k=25
k=100

0 2 4 6 8 10 12 14
10

15

20

25

30

35

40

45

50

55

60
Shuttle − Robust solving set size

False positive rate [%]

R
o

b
u

s
t 

s
o

lv
in

g
 s

e
t 

re
la

ti
v
e

 s
iz

e
 [

%
]

k=25
k=100

0 2 4 6 8 10 12

20

30

40

50

60

70

80

90

DARPA − ROC curves: dataset (dashed line) 
and robust solving set (solid line)

False positive rate [%]

D
e

te
c
ti
o

n
 r

a
te

 [
%

]

k=500
k=1000

0 2 4 6 8 10 12
15

20

25

30

35

40

45

50

55

60
DARPA − Robust solving set size

False positive rate [%]

R
o

b
u

s
t 

s
o

lv
in

g
 s

e
t 

re
la

ti
v
e

 s
iz

e
 [

%
]

k=500
k=1000

2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

100

KDD Cup − ROC curves: dataset (dashed line) 
and robust solving set (solid line)

False positive rate [%]

D
e

te
c
ti
o

n
 r

a
te

 [
%

]
k=10
k=25

2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35
KDD Cup − Robust solving set size

False positive rate [%]

R
o

b
u

s
t 

s
o

lv
in

g
 s

e
t 

re
la

ti
v
e

 s
iz

e
 [

%
]

k=10
k=25

Fig. 14. ROC curves and robust solving set sizes.

obtain good prediction results because of the peculiarity
of this data set in which inliers and outliers overlap. In
particular, some relatively big clusters of inliers are close
to regions of the feature space containing outliers. As a
consequence a value of k ≥ 500 is needed to “erase” the
contribution of these clusters to the weight of an outlier
query object and, consequently, to improve the detection
rate.
Finally, for the KDD Cup data set, when k = 25, a

detection rate of 90% can be obtained if we allow a 6%
of false positives, while a detection rate of 95% can be
obtained if we allow a 9% of false positives. We notice
that, if we use the overall data set the detection rate is
lower, while, as the figure shows, the size of the robust
solving set is below the 10% of the overall data set in the
former case, and below the 20% in the latter. This result
strengthens the worthiness of the approach proposed.

7.5 Discussion

In this section we draw some considerations concerning
the applicability of the method here presented.
It is known that the perception of what is an outlier

is rather subjective. The task of detection is to find those
objects that seem to behave differently from the others,
the human analyst with expertise in the application
domain has then the task to decide if the obtained
objects can be effectively considered as outliers. For
example, the dark stars in Figure 2 are those objects that
most deviate (in this case more distant) from the others.
However, in the detection context it is important to tune
the trade-off between the detection rate and the false

positive rate. For example, the increase of the number of
normal objects to be considered outliers, allows to have
a higher detection rate in the prediction phase.

As regards the choice of the parameters n and k,
when the labels of the data set are known, they can be
set by tuning the trade-off between false positive rate
and detection rate. This tuning can be obtained with
a trial-and-error process. Different values of n and k
are fixed and the trade-off between false positive rate
and detection rate is studied: a higher false positive
rate is accepted if the detection rate increases sensibly.
However, in general the labels are not known, but we
observed that, when the believed overlapping degree
between the normal and abnormal classes is low, then
a small value of k is sufficient. This behavior is noticed,
for example, in the experiments reported in Figure 14,
where for the DARPA data set high values of k are
necessary because normal and abnormal data are not
separated. As regards the choice of n, it is more related
to the expectation on the percentage of abnormal objects
present in the data to be processed.

As for the applicability of the method in finding
outliers, we experimented that, if the distributions of the
normal and abnormal data are such that the two classes
either do not overlap or have a low degree of overlap-
ping in the feature space adopted, the method behaves
well. When the method is not able to discriminate, we
can assume that either the feature space or the distance
notion used are not suitable for that application domain.

Finally, although the prediction phase can obviously
take advantage of optimized techniques to search for



17

the k nearest neighbors [26], testing such techniques in
our methods is not the primary aim of our proposal. As
regards the prediction time, it depends on the dimension
of the solving set and on the algorithm used to find
the k nearest neighbors (i.e. exhaustive search, k-d-tree,
pivots, etc.). However, both the temporal and spatial
complexities are directly proportionate to the size of the
input data set on which the search must be done. Thus
the substitution of the whole data set with a subset of it
is in any case advantageous from the point of view of
computational resources to be employed.

8 CONCLUSIONS

This work enhances the state of distance-based out-
lier detection research, by giving the first proposal of
distance-based outlier prediction method. The method
introduced is based on the notion of outlier detection
solving set, a subset of the data set, that can be used to
predict if new unseen objects are outliers. The scalings
analysis of the solving set size points out that it is
composed by a fraction of the overall data set, the false
positive rate is shown to be negligible, and ROC analysis
of the method demonstrates that using the solving set
instead of the data set guarantees a comparable accuracy,
but at a lower computational cost.

REFERENCES

[1] J. Han and M. Kamber, Data Mining, Concepts and Technique.
Morgan Kaufmann, San Francisco, 2001.

[2] T. Fawcett and F. Provost, “Adaptive fraud detection,” Data
Mining and Knowledge Discovery, vol. 1, pp. 291–316, 1997.

[3] W. Lee, S. Stolfo, and K. Mok, “Mining audit data to build intru-
sion detection models,” in Proc. Int. Conf on Knowledge Discovery
and Data Mining (KDD-98), 1998, pp. 66–72.

[4] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geo-
metric framework for unsupervised anomaly detection : Detecting
intrusions in unlabeled data,” in Applications of Data Mining in
Computer Security, Kluwer, 2002.

[5] E. Knorr and R. Ng, “Algorithms for mining distance-based
outliers in large datasets,” in Proc. Int. Conf. on Very Large Databases
(VLDB98), 1998, pp. 392–403.

[6] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms
for mining outliers from large data sets,” in Proc. Int. Conf. on
Managment of Data (SIGMOD’00), 2000, pp. 427–438.

[7] F. Angiulli and C. Pizzuti, “Outlier mining in large high-
dimensional data sets,” IEEE Transaction on Knowledge and Data
Engineering, vol. 2, no. 17, pp. 203–215, February 2005.

[8] S. D. Bay and M. Schwabacher, “Mining distance-based outliers
in near linear time with randomization and a simple pruning
rule,” in Proc. Int. Conf. on Knowledge Discovery and Data Mining
(KDD’03), 2003.

[9] S. Floyd and M. Warmuth, “Sample compression, learnability, and
the vapnik-chervonenkis dimension,” Machine Learning, vol. 211,
no. 3, pp. 269–304, 1995.

[10] B. Schölkopf, C. Burges, and V. Vapnik, “Extracting support data
for a given task,” in Proc of the 1st Int. Conf. on Knowledge Discovery
& Data Mining, 1995, pp. 252–257.

[11] V. Barnett and T. Lewis, Outliers in Statistical Data. John Wiley
& Sons, 1994.

[12] A. Arning, C. Aggarwal, and P. Raghavan, “A linear method
for deviation detection in large databases,” in Proc. Int. Conf. on
Knowledge Discovery and Data Mining (KDD’96), 1996, pp. 164–169.

[13] M. M. Breunig, H. Kriegel, R. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” in Proc. Int. Conf. on Managment of
Data (SIGMOD’00), 2000.

[14] W. Jin, A. Tung, and J. Han, “Mining top-n local outliers in
large databases,” in Proc. ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD’01), 2001.

[15] K. Yamanishi and J. Takeuchi, “Discovering outlier filtering rules
from unlabeled data,” in Proc. ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining (KDD’01), 2001, pp. 389–394.

[16] E. Knorr, R. Ng, and V. Tucakov, “Distance-based outlier: algo-
rithms and applications,” VLDB Journal, vol. 8, no. 3-4, pp. 237–
253, 2000.

[17] E. Knorr and R. Ng, “Finding intensional knowledge of distance-
based outliers,” in Proc. Int. Conf. on Very Large Databases
(VLDB99), 1999, pp. 211–222.

[18] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava,
“A comparative study of anomaly detection schemes in network
intrusion detection,” in Proc. SIAM Int. Conf. on Data Mining
(SIAM-03), 2003.

[19] M. R. Garey and D. S. Johnson, Computer and Intractability. New
York: W. H. Freeman and Company, 1979.

[20] D. Peleg, G. Schechtman, and A. Wool, “Randomized approxima-
tion of bounded multicovering problems,” Algorithmica, vol. 18,
no. 1, pp. 44–66, 1997.

[21] L. Mangasarian and W. H. Wolberg, “Cancer diagnosis via linear
programming,” SIAM News, vol. 25(5), pp. 1–18, 1990.

[22] C. Feng, A. Sutherland, S. King, S. Muggleton, and R. Henery,
“Comparison of machine learning classifiers to statistics and
neural networks,” in AI & Stats Conf. 93, 1993.

[23] D. A. R. P. A. DARPA, “Intrusion detection evaluation,” in
http://www.ll.mit.edu/IST/ideval/index.html.

[24] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy
estimation for comparing induction algorithms,” in Proc. Int. Conf.
on Machine Learning (ICML’98), 1998.

[25] L. Torgo and R. Ribeiro, “Predicting outliers,” in Proc. Int. Conf.
on Principles of Data Mining and Knowledge Discovery (PKDD’03),
2003, pp. –.

[26] V. Gaede and O. Günther, “Multidimensional access methods,”
ACM Comput. Surv., vol. 30, no. 2, pp. 170–231, 1998.


