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Abstract—We present a novel definition of outlier in the
context of inductive logic programming. Given a set of positive
and negative examples, the definition aims at singling out
the examples showing anomalous behavior. We note that the
task here pursued is different from noise removal, and, in
fact, the anomalous observations we discover are different in
nature from noisy ones. We discuss pecularities of the novel
approach, present an algorithm for detecting outliers, discuss
some examples of knowledge mined, and compare it with
alternative approaches.

I. INTRODUCTION

Traditional approaches to outlier detection model the nor-
mal behavior of individuals by performing some statistical
kind of computation on the given data set and, then, sin-
gle out those individuals whose behavior or characteristics
significantly deviate from normal ones. However, a very
interesting direction of research concerns the capability of
exploiting domain knowledge in order to guide search for
anomalous observations. Indeed, while looking over a set
of observations to discover outliers, it often happens that
there is some qualitative description of the domain of interest
encoding what an expected normal behavior should be. This
description might be, for instance, derived by an expert
and might be formalized by means of a suitable language
for knowledge representation. With this aim, in [1], [2] a
concept of outlier in the context of default reasoning ad
logic programming is presented.

Inductive Logic Programming (ILP) is an important field
at the intersection of machine learning and logic program-
ming which aims at inducing relation descriptions of data
in the form of logic programs [3]. In the context above
delineated, we present a definition of outlier in the field
of ILP. Given a set of positive and negative examples from
a concept, the definition aims at singling out the examples
showing exceptional behavior. The method is unsupervised,
since there are no examples of normal/abnormal behavior,
even if it has connections with supervised learning, since it
is based on induction from examples which are instances of
a concept. In particular, the definition distinguishes among
three kinds of abnormalities, that are irregular, anomalous,
and outlier observations. This allows us to provide a finer
characterization of the anomaly at hand and to single out
more subtle forms of anomalies. Moreover, we are also
able to provide exaplanations for the abnormality of the

observation, in the form of a pair of logic programs, which
make more intellegible the motivation underlying its excep-
tionality.

ILP learning systems usually have a single mechanism,
called noise-handling mechanism [4], for dealing with noisy,
incomplete and inexact data, which prevents the induced
hypothesis from overfitting the data set. While the presence
of noise in the examples has some relationship with the
approach here pursued, the other kinds of imperfect data
are orthogonal to the present task, in that they are problems
of the learning task in its entirety.

There are major differences also between the approach
presented here and those introduced in [1], [2]. First, our
approach is based of induction, while the others are based
on deduction. Indeed, the disagreement of the abnormal
observations with the theory at hand is perceived here by
means of a measure of the difference of the generalization
of the hypotheses induced in presence/absence of the obser-
vations (the compliance relationship), while in [1], [2] it is
perceived by means of the satisfaction of certain conditions
involving the entailment operator. Moreover, importantly, the
definitions proposed in [1], [2] strongly rely on the non-
monotonicity of the employed formalisms, which use either
default rules or negation by default (other than the classical
negation). As a matter of fact, if the logic program under
consideration is positive, that is under the formal framework
considered here, according to the definition provided in [2]
there are no outliers in a logic program (cf. Theorem 3.2
of [2]). This makes the two approaches for defining outliers
incomparable even from a practical point of view.

The rest of the paper is organized as follows. Section II
presents some preliminary definitions. Section III introduces
the notion of abnormal example. Section IV provides the
definition of ILP-based outlier mining problem. Section
V reports experimental results. Finally, Section VI draws
conclusions.

II. PRELIMINARY DEFINITIONS

The reader is referred to [5] for basics on Logic Pro-
gramming and to [3] for Inductive Logic Programming. Next
we provide some definitions useful to define the concept of
outlier in ILP.

The set of ground atoms covered by a clause c is denoted
as covers(c). If C is a set of clauses, covers(C) is the union



of the set of ground atoms covered by the clauses in C. Let
E be a set of ground atoms. In the following, coversE(C)
denotes the set covers(C)∩E. By definition, we assume that
coversE(∅) = E.

Given a logic program P and a set of ground atoms E,
the restriction P (E) of P to E is the logic program P (E) =
{c ∈ P | coversE({c}) ̸= ∅}.

Let U be an universal set of observations, also called
objects or instances. A (direct) concept C is a subset of U .
The dual concept C of C is the concept U \ C.

A set of examples E is a set of ground atoms that can be
partitioned in two subsets, that are E+, the set of positive
examples, and E−, the set of negative examples.

The problem that ILP is interested in solving can be stated
as follows: Given a set of examples E , find a hypothesis HE

B
such that HE

B ∪ B entails the examples in E; namely:
1) for each e ∈ E+, e ∈ covers(HE

B ∪B) (completeness),
2) for each e ∈ E−, e ̸∈ covers(HE

B ∪ B) (consistency).
Next we provide the concepts of coverage, gain, and

compliance.
Definition 1 (Coverage): Let C be a set of clauses and

let E be a set of examples. Then the coverage covE(C) of
C in E is the following function:

covE(C) =
1

|E|

(∏
c∈C

|coversE(c)|

) 1
|C|

.

Intuitively, the coverage of a set of clauses in a set
of examples measures how many examples of the set are
covered in average by the clauses. In particular, the definition
of coverage here provided is based on the geometric mean
in order to penalize the presence of rules covering few
examples. We will employ the coverage as a measure of
the generalization of a set of clauses.

Definition 2 (Gain): Given two sets of clauses C1 and C2

and a set of examples E , the gain gainE(C1, C2) of C1 over
C2 in E is defined as

gainE(C1, C2) = covE(C1)− covE(C2).

A positive gain means that the clauses in C1 averagely
cover a larger number of examples in E than the clauses
in C2. Intuitively, this means that the clauses in C1 can be
considered more general than those in C2.

Given a set of examples E and a nonempty subset O of
E we say that O is pure if either O ⊆ E+ or O ⊆ E− hold.

Definition 3 (Compliance): Given a background knowl-
edge B, a set of examples E , and a pure subset O of E , we
say that O α-complies (or, simply, complies) with E ∪ B,
written E ∪ B ⇝ O, if

gainE+\O

(
HE\O

B ,HE
B

)
< α,

where α is an user-provided parameter in [0, 1]. Otherwise,
O does not comply with E ∪ B, written E ∪ B ⇝̸ O.
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Figure 1. Example theory.

Intuitively, if a subset of examples does not comply with a
background theory and the whole set of examples, then this
means that the hypothesis induced in absence of this subset
is significatively more general than the hypothesis induced
when the examples are seen.

Given a set of examples E , the dual set E of E is the set
of examples E such that E +

= E− and E −
= E+. Note that

by using E as set of examples, the dual concept C of C is
learned, where C is the concept of which the examples E are
instances. Let p denote the target predicate symbol. When
the dual concept is learned we will employ in the induced
hypothesis the predicate symbol not p instead of p.

III. ABNORMAL EXAMPLES

Given a pure subset of examples O of E , we argue that
the compliance of these examples with E ∪ B and E ∪ B
can be exploited in order to understand if the set O contains
abnormal observations. In order to illustrate the concepts
that will be defined in this section, we make use of an
example.
EXAMPLE 1. Let

E+ = {tp(a), tp(b), tp(c), tp(d), tp(e), tp(l), tp(m)},
E− = {tp(f), tp(g), tp(h), tp(i), tp(j), tp(k), tp(n)}

be a given set of examples, and

B = {p(o), p(x), p(y), p(z), q(a), q(b), q(c), q(l), q(m),

r(f), r(g), r(n), s(e), s(f), s(g), s(h), s(n),

t(c), t(d), u(a), u(e), u(o), v(b), v(j), v(k),

w(m), w(l), w(x), w(y), w(z)}

be a given background knowledge. Figure 1 shows the examples
in E and the subsets covered by each predicate in the background
theory.

Let the induced hypothesis HE
B be (throughout the paper, be-

tween angle brackets we report the number of examples covered
by each clause):

HE
B =


c1 ≡ tp(X)← q(X) ⟨5⟩
c2 ≡ tp(X)← w(X) ⟨5⟩
c3 ≡ tp(X)← u(X) ⟨3⟩
c4 ≡ tp(X)← t(X) ⟨2⟩



and the induced dual hypothesis HE
B be:

HE
B =


c1 ≡ not tp(X)← r(X) ⟨3⟩
c2 ≡ not tp(h) ⟨1⟩
c3 ≡ not tp(j) ⟨1⟩
c4 ≡ not tp(k) ⟨1⟩

For the sake of simplicity, assume thatO is a subset of E+.
As already said, if the setO does not comply with E∪B, then
the description of the concept would be significantly more
concise if each example in O were not observed. Hence,
intuitively, we can say that the examples in O are likely to do
not match regularities joining the remaining instances of the
concept. In order to better understand the kind of irregularity
represented by the examples in O, the compliance of O
with E ∪ B has to be investigated. In particular, if O does
not comply with E ∪ B, but O complies with E ∪ B, then
the description of the concept would be significantly more
concise if each example in O were not observed, whereas
the dual description of the concept is not affected by the set
of examples O. Thus, in this case the examples are hard to
be covered since we can imagine they are “far away” the
majority of the positive examples, but anyway “far” form
the negative ones. We identify these examples as irregular.

Definition 4 (Irregular set): Given a background knowl-
edge B, a set of examples E , and a subset O of E+ (E−,
resp.), we say that O is irregular in E ∪ B if E ∪ B ̸⇝ O
(E ∪ B ⇝ O, resp.) and E ∪ B ⇝ O (E ∪ B ̸⇝ O, resp.).

Example 1 (continued). Assume α is set to 0.04 and consider
the set O = {tp(d)}. We note that the set O is irregular.
Indeed, E ∪ B ̸⇝ {tp(d)}, since if {tp(d)} were not seen then
the induced theory HE\O

B would not contain c4 being, hence,
more concise. In particular, covE+\O(HE

B) =
4√5·5·2·1

10
= 0.27,

while covE+\O(HE\O
B ) =

3√5·5·2
10

= 0.37, and the gain is 0.10.

Conversely, E ∪ B ⇝ {tp(d)} since HE\O
B is not affected by the

absence of {tp(d)} (the gain is zero).

A similar line of reasoning can be employed if O does
not comply with E ∪B. In particular, if O does not comply
with E ∪ B and O complies with E ∪ B, then the examples
in O well fit the concept to be learned, but they also have
some commonalities with the dual concept, so that it is very
difficult to discriminate them from a non-instance. Hence,
we call these examples anomalous.

Definition 5 (Anomalous set): Given a subset O of E+
(E−, resp.), we say that O is anomalous in E ∪B if E ∪B ⇝
O (E ∪ B ̸⇝ O, resp.) and E ∪ B ̸⇝ O (E ∪ B ⇝ O, resp.).

Example 1 (continued). Consider now the setO = {tp(b)}. This set
is anomalous. Indeed, E∪B ⇝ {tp(b)} since the hypothesis HE\O

B
induced in absence of O coincides with HE

B. Conversely, E ∪B ̸⇝
{tp(b)} since if {tp(b)} were not seen then the induced dual theory
HE\O

B would contain the clause tp(X)← v(X) instead of the facts
c3 and c4. In fact, covE+\O(HE\O

B ) =
3√3·2·1

6
, covE\O(HE

B) =
4√3·1·1·1

6
, and the gain is 0.08.

O ⊂ E pure E ∪ B ⇝ O E ∪ B ̸⇝ O

E ∪ B ⇝ O normal anomalous (positive)
irregular (negative)

E ∪ B ̸⇝ O irregular (positive) outlieranomalous (negative)

Table I
THE DIFFERENT KINDS OF ABNORMAL EXAMPLES.

Assume now that O does not comply with E ∪ B and
also O does not comply with E ∪ B. In this case also
the description of the dual concept would be significantly
more concise if each example in O were not observed.
Intuitively, this means that the examples in O present some
commonalities with the non-instances of the concept to be
learned. In this case, both the description of the concept C
and the description of the dual concept C would benefit if the
examples in O and in O, respectively, were not observed.
We can imagine that these examples are hard to be covered,
since they lie either very close or even within the “shape” of
the dual concept, and we identify these examples as outliers.

Definition 6 (Outlier set): Given a pure subset O of E ,
we say that O is outlier in E ∪B if E ∪B ⇝̸ O and E ∪B ̸⇝
O.

Example 1 (continued). The set O = {tp(e)} is an outlier. Indeed,
E ∪O ̸⇝ {tp(e)}, since if {tp(e)} were not seen then the induced
theory HE\O

B would not contain c3, being, hence, more concise. In
particular, covE+\O(HE\O

B ) =
3√5·4·2
10

, since HE\O
B would contain

c5 ≡ tp(X) ← p(X) instead of c2 and c3, covE+\O(HE
B) =

4√5·5·2·1
10

and the gain is 0.08. Moreover, E ∪ B ̸⇝ {tp(e)}, since
if {tp(e)} were not seen then the induced dual theory HE\O

B would
contain the clause c6 ≡ not tp(X)← s(X) instead of c1 and c2.
In particular, covE+\O(HE\O

B ) =
3√4·1·1

6
and covE+\O(HE

B) =
4√3·1·1·1

6
, and the gain is 0.045.

A pure set of examples O such that both E ∪B ⇝ O and
E ∪B ⇝ O hold is said to be normal, otherwise it is said to
be abnormal. Abnormal set of examples can be partitioned
into outlier, irregular and anomalous examples, according to
what aforesaid. Table I summarizes the different kinds of
abnormal example sets that have been defined.

IV. STATEMENT OF THE PROBLEM AND ALGORITHM

In this section we define the outlier detection problem in
the context of ILP. First of all, we introduce an alternative
notion of compliance which is based on the previous one,
but presents some advantages which will be discussed next.
Intuitively, the novel definition of compliance focuses on the
portion of the theory involving only the examples in O.

For the sake of simplicity, let O be a set of positive
examples and consider the theory HE

B induced in presence
of O. The set of clauses in HE

B can be partitioned in two
groups, that are the clauses in HE

B(O) that cover some of the



examples in O, and the remaining ones, that are the clauses
in HE

B \ HE
B(O). We call starting theory the former theory,

since it builds on the examples in O.
As for the set of examples, it can be partitioned in three

sets, that are the examples in O, the examples Ô not in O
and covered only by clauses in HE

B(O), and the remaining
ones. Consider now the theory HE\O

B induced in absence
of O. In this case, the piece of theory which is affected
by the absence of the examples in O is that composed of
the clauses that cover some of the examples in Ô (recall
that these examples are those not covered by the clauses in
HE

B \ H
E
B(O)). Hence, we call ending theory this theory.

We can now redefine the compliance by exploiting the
gain of the ending theory over the starting theory in E+ \O.

Definition 7 (Compliance): Given a pure subset O of E ,
let Ê denote E+ \O. We say that O α-complies (or, simply,
complies) with E ∪ B, written E ∪ B ⇝ O, if

gainÊ

(←−
HE

B(O),
−→
HE

B(O)
)
< α,

where the theories
−→
HE

B(O) (the starting theory) and
←−
HE

B(O)
(the ending theory), are defined as follows:

• if O ⊆ E+, then
−→
HE

B(O) is HE
B(O) and

←−
HE

B(O) is
HE\O

B (Ô), where Ô is

coversÊ
(
HE

B
)
\ coversÊ

(
HE

B \ H
E
B(O)

)
,

that is the set of examples in E+ \ O covered only by
clauses of HE

B that cover some examples in O;
• if O ⊆ E−, then

−→HE
B(O) is HE

B(Ô) and
←−HE

B(O) is
HE\O

B (O), where Ô is

coversÊ
(
HE\O

B

)
\ coversÊ

(
HE\O

B \ HE\O
B (O)

)
,

that is the set of examples in E+ \ O = E+ covered
only by clauses of HE\O

B that cover some examples in
O.

Example 1 (continued). Consider the outlier set O = {tp(e)}.
Then the starting theory

−→HE
B(O) is HE

B(O) = {c3} and, moreover,
Ô is

coversE+\{tp(e)}({c1, c2, c3, c4}) \ coversE+\{tp(e)}({c1, c2, c4})

that is {tp(o)}. Let the theory HE\O
B induced in absence of O be

HE\O
B =

 c′1 ≡ tp(X)← q(X) ⟨5⟩
c′2 ≡ tp(X)← p(X) ⟨4⟩
c′3 ≡ tp(X)← t(X) ⟨2⟩

Then the ending theory
←−
HE

B(O) is HE\O
B (Ô) = {c′2}, and the gain

is 3
10
− 1

10
= 0.20.

As for the dual concept, O is {tp(e)}, let the theory HE\O
B

induced in absence of O be

HE\O
B =

 c′1 ≡ not tp(X)← s(X) ⟨4⟩
c′2 ≡ not tp(j) ⟨1⟩
c′3 ≡ not tp(k) ⟨1⟩

Then the ending theory
←−
HE

B(O) is HE\O
B (O) = {c′1}. The set Ô

is
coversE−({c′1, c′2, c′3}) \ coversE−({c′2, c′3}),

that is {not tp(f), not tp(n), not tp(g), not tp(h)}. The start-
ing theory

−→HE
B(O) is HE

B(Ô) = {c1, c2}, and the gain is
4
6
−

√
3·1
6

= 0.38.

Now we discuss the advantages of the novel definition of
compliance.

First, we note that the starting theory and the ending
theory associated with the abnormal set of examples play
the role of explanation for its abnormality. Indeed, since
they represent the portion of knowledge which is affected
by the presence/absence of the abnormal set, by comparing
them the analyst can understand the motivation underlying
the abnormality of the example set. With this aim, if O
(O, resp.) does not comply with E ∪ B, then we call
direct (dual, resp.) explanation the pair (

−→
HE

B(O),
←−
HE

B(O))
((
−→HE

B(O),
←−HE

B(O)), resp.), also said the direct (dual, resp.)
starting/ending theories associated with O (O, resp.) in HE

B
(HE

B, resp.).
Second, comparing only the pieces of theories related to

the abnormal set is more meaningful than comparing the two
full theories, and, moreover, this kind of comparison makes
the definition less sensitive to “global changes”.

Now we are in the position of formally defining the ILP-
based Outlier Detection problem.

Definition 8: Given a background knowledge B, a set of
examples E , and a maximum size kmax, find the minimal
abnormal subsets O of E of size not exceeding kmax,
together with their associated explanations.

The pseudo-code of the ILP-based-outlier-detector al-
gorithm for mining the ILP-based outliers is reported in
Figure 2. The functions Gain+ and Gain− are used to test
compliance according to Definition 7.

V. EXPERIMENTS

In this section we present some experiments conducted by
using the proposed algorithm. We implemented the outlier
detection algorithm in Yap Prolog on top of the P-Progol
system1 which is based on the PROGOL algorithm [6].

A. Zoo data set

In this experiment we considered the Zoo data set from the
UCI Machine Learning Repository2. This database contains
instances associated with animals. Each instance consists of
the animal name, the class which it belongs to (amphibian,
bird, fish, invertebrate, insect, mammal, reptile), the number
of legs and other boolean attributes. We built a background
theory consisting of one unary predicate for each boolean
attribute, and of the binary predicate legs. We used as target

1www.comlab.ox.ac.uk/oucl/research/areas/
machlearn/PProgol/pprogol.pl.

2http://archive.ics.uci.edu/ml/datasets/Zoo.



ILP-based-outlier-detector(B, E , α, kmax)
1. Out← ∅
2. Anom← ∅
3. Irr← ∅
4. find the hypothesis H0 ←HE

B
5. find the hypothesis H0 ←HE

B
6. let Cand1 ← {{e} | e ∈ E}
7. for k = 1 to kmax do
8. NextCandk ← ∅
9. for each O in Candk do
10. if O ⊆ E+ then
11. let ⟨H+

s ,H+
e , g+⟩ ← Gain+(H0,B, E,O)

12. let ⟨H−
s ,H−

e , g−⟩ ← Gain−(H0,B, E,O)
13. else
14. let ⟨H−

s ,H−
e , g−⟩ ← Gain−(H0,B, E,O)

15. let ⟨H+
s ,H+

e , g+⟩ ← Gain+(H0,B, E,O)
16. if g+ ≥ α and g− ≥ α then
17. Out← Out ∪ {⟨O, (H+

s ,H+
e ), (H−

s ,H−
e )⟩}

18. else if g+ ≥ α then
19. Irr← Irr ∪ {⟨O, (H+

s ,H+
e )⟩}

20. else if g− ≥ α then
21. Anom← Anom ∪ {⟨O, (H−

s ,H−
e )⟩}

22. else
23. let NextCandk ← NextCandk ∪ {O}
24. let Candk+1 ← GenerateCand(Ck)
25. return ⟨Out, Irr,Anom⟩
Gain+(H, B, E , O)
26. let H1 ←H(O) // starting theory
27. find the hypothesis H2 ←HE\O

B
28. let Ê ← E+ \ O
29. let Ô ← coversÊ(H) \ coversÊ(H \H1)

30. let H3 ←H2(Ô) // ending theory
31. return ⟨H1,H3, gainÊ(H3,H1)⟩
Gain−(H, B, E , O)
32. find the hypothesis H2 ←HE\O

B
33. let H3 ←H2(O) // ending theory
34. let Ê ← E+
35. let Ô ← coversÊ(H2) \ coversÊ(H2 \ H3)

36. let H1 ←H(Ô) // starting theory
37. return ⟨H1,H3, gainÊ(H3,H1)⟩

Figure 2. The ILP-based-outlier-detector algorithm.

predicate the binary predicate class. The set of positive
examples consists of one hundred facts. The set of negative
examples, consisting of six hundreds facts, has been obtained
by associating each animal with the classes it does not
belong to.

We executed the algorithm with α = 0.05 and kmax =
1. Besides the facts in the induced hypothesis and the
induced dual hypothesis, which are classified as irregu-
lar sets, the algorithm reported the following abnormal
sets: O1 = {class(amphibian, newt)} as positive outlier,
O2 = {class(insect, ladybird)} as positive anomalous, and
O3 = {class(mammal, platypus)} as positive anomalous.
Next we briefly comment on the knowledge discovered by
the method.

Newt: The positive outlier set O1 =
{class(amphibian, newt)} is a fact in the direct theory,
while it has as dual explanation the dual starting theory−→
HE

B(O1):

not class(amphibian,X)← catsize(X) ⟨44⟩
not class(amphibian,X)← legs(2, X) ⟨27⟩
not class(amphibian, tuatara) ⟨1⟩
not class(amphibian, scorpion) ⟨1⟩,

and the dual ending theory
←−
HE

B(O1):
not class(amphibian,X)← tail(X) ⟨74⟩,

with gain 0.11. From this explanation, it is clear that the
newt is the only amphibian in the example set having the
tail. As a matter of fact, it is the only amphibian of the
Caudata order belonging to the set of examples, while all
the other amphibians in the example set belong to the Anura
order, which is characterized by the absence of tail.

Ladybird: The positive anomalous set O2 =
{class(insect, ladybird)} has as dual explanation the dual
starting theory

−→
HE

B(O2):
not class(insect,X)← aquatic(X) ⟨35⟩
not class(insect, scorpion) ⟨1⟩,

and the dual ending theory
←−HE

B(O2):
not class(insect,X)← predator(X) ⟨54⟩,

with gain 0.08. Indeed, among the insects present in the
examples, that are the flea, gnat, honeybee, housefly, moth,
termite, and wasp, the ladybird is the only predator.

Platypus: The positive anomalous set O3 =
{class(mammal, platypus))} has as dual explanation the
dual starting theory

−→
HE

B(O3):
not class(mammal,X)← legs(6, X) ⟨10⟩
not class(mammal,X)← feathers(X) ⟨20⟩
not class(mammal,X)← eggs(X), toothed(X) ⟨19⟩
not class(mammal,X)← eggs(X), legs(0,X) ⟨19⟩
not class(mammal, starfish) ⟨1⟩
not class(mammal, tortoise) ⟨1⟩
not class(mammal, crab) ⟨1⟩
not class(mammal, octopus) ⟨1⟩,

and the dual ending theory
←−HE

B(O3):
not class(mammal,X)← eggs(X) ⟨57⟩,

with gain 0.09. The platypus is a well-known strange mam-
mal, since the female lays eggs, although the newly hatched
young are fed by the mother’s milk.

B. Student Loan

Here we consider the Student Loan relational domain from
the UCI Machine Learning Repository3. The target unary
predicate no payment due(Person) is true for those people
who are not required to repay a student loan. Auxiliary
relations can be used to fully discriminate positive from
negative instances. We executed the algorithm with α = 0.05
and kmax = 1, with 78 positive examples and 34 negative
examples, consisting of the students whose identifier number
starts with 1. Next we briefly commment on the negative
outlier set O1 = {no payment due(student149)}. It has as
direct explanation the direct starting theory

−→
HE

B(O1):

3http://archive.ics.uci.edu/ml.



no payment due(X)← enrolled(X,Y, 10) ⟨12⟩
and the direct ending theory

←−
HE

B(O1):
no payment due(X)← male(X), enrolled(X,Y, 10) ⟨6⟩
no payment due(student165) ⟨1⟩
no payment due(student112) ⟨1⟩
no payment due(student196) ⟨1⟩,

with gain 0.13, while it is a fact in the dual theory. The
student149 is strange, since it is the only enrolled in ten
units which is required to repay a student loan.

C. Comparison with noise-handling mechanisms

In order to compare our approach with noise-handling
mechanisms implemented in ILP learning systems, we ran P-
Progol by setting the parameter noise (representing an upper
bound on the number of negative examples allowed to be
covered by an acceptable clause) to 5 and the parameter min-
pos (representing a lower bound on the number of positive
examples to be covered by an acceptable clause) to 2. Ac-
cording to the induced hypothesis the positive examples as-
sociated with clam, crab, seawasp, slug, starfish, worm,
pitviper, seasnake, slowworm, tortoise, and tuatara are
classified as noise. Moreover, the unique negative example
classified as noise is class(amphibian,tuatara).

The positive examples classified as noise, were reported
as irregular singleton sets by our method since they do
not comply with the set of examples, being facts in the
complete and consistent direct hypothesis. As for the
negative example class(amphibian,tuatara), it was also
reported as an irregular singleton set by our method, since
it does not comply with the dual set of examples, being a
fact in the complete and consistent dual hypothesis. As for
its compliance with the set of examples, the starting theory
associated with the set {class(amphibian, tuatara)}
is {class(amphibian, toad), class(amphibian, frog),
class(amphibian, newt)}, while the corresponding ending
theory is:
class(amphibian,X)← eggs(X), toothed(X), legs(4,X) ⟨3⟩
with associated gain 0.02. Hence, for α ≤ 0.02 it would
be recognized as an outlier set by our method. We note
that our method found the outlier set {class(amphibian,
newt)}, and the anomalous sets {class(insect, ladybird)}
and {class(mammal, platypus)}, for which there is no
counterpart in the noise returned by P-Progol.

D. Comparison with DB-Outliers

We compared the method here presented with the
distance-based outlier definition [7], by searching the
distance-based outliers in the original Zoo data set. We
used as outlier score the sum of the distances to the k-
nearest neighbors [8], the Hamming function as distance
measure, and we set both k (the number of nearest neighbors
to consider) and n (the number of outliers to return) to 5
(that corresponds to the 5% of the positive examples). The
following table reports the top-n distance-based outliers:

Outlier (Score) Nearest Neighbors
1. scorpion (25) worm, slug, pitviper, clam, crab
2. seasnake (19) pitviper, stingray, chub, herring, bass
3. tortoise (18) tuatara, ostrich, rhea, slowworm,wren
4. toad (17) frog, newt, tuatara, worm, crab
5. pitviper (15) slowworm, tuatara, seasnake, newt, kiwi

As for the comparison with our method, the singleton sets of
positive examples associated with the distance-based outliers
2, 3, 4, and 5, are returned as irregular sets by our method,
while, as for the outlier 1, some singleton sets of negative
examples involving it are returned as irregular sets. The
example class(invertebrate, scorpion) is not recognized
as abnormal, since it shares with the octopus the property
of having eight legs. It is clear, that the abnormal instances
returned by the distance-based method are of different
nature with respect to those returned by the approach here
introduced. In particular, distance-based outliers are likely
to correspond to irregular instances, since, intuitively, they
are objects whose attribute-value pattern is shared less.

VI. CONCLUSIONS

In this work, we presented a novel approach to detect
outliers which exploits domain knowledge. We introduced
the novel definition of ILP-based outlier. We discussed
some examples of knowledge mined, and compared it with
alternative approaches. As future work, we are intended to
investigate the computational complexity of the problem and
to design more efficient mining algorithms for dealing with
large data sets.
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