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Abstract

In this paper we present a novel approximate algorithm to calculate the top-k closest pairs join query of

two large and high dimensional data sets. The algorithm has worst case time complexity Oðd2nkÞ and space

complexity OðndÞ and guarantees a solution within a Oðd1þ1
tÞ factor of the exact one, where t 2 {1,2, . . . ,1}

denotes the Minkowski metrics Lt of interest and d the dimensionality. It makes use of the concept of space

filling curve to establish an order between the points of the space and performs at most d + 1 sorts and scans

of the two data sets. During a sca\n, each point from one data set is compared with its closest points,

according to the space filling curve order, in the other data set and points whose contribution to the solu-

tion has already been analyzed are detected and eliminated. Experimental results on real and synthetic data

sets show that our algorithm behaves as an exact algorithm in low dimensional spaces; it is able to prune the

entire (or a considerable fraction of the) data set even for high dimensions if certain separation conditions

are satisfied; in any case it returns a solution within a small error to the exact one.
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1. Introduction

Algorithms for extracting knowledge from large multidimensional data sets often involve que-
ries relating data coming from multiple tables, a join query in database terms. A join query finds
pairs of data points satisfying a particular property. Examples of join queries are similarity join

query and top-k closest pairs join query (k-CPQ). Given two d-dimensional data sets B and R,
the former kind of query searches for the pairs of points p = (p1, . . . ,pd) from B and q = (q1, . . . ,qn)
from R such that the distance between them is less than an input value �, that is such that
distðp; qÞ ¼ ð

Pd
i¼1 jpi � qij

tÞ1=t 6 �, where t 2 {1,2, . . . ,1} identifies the metrics of interest.
Top-k closest pairs join query, instead, searches for the k pairs from the two data sets B and R

having the k smallest distances between them. This last problem has been largely studied in com-
putational geometry [28,32] and it is known as the bichromatic k closest pairs problem [4,18,21].
Recently, join queries received a lot of attention in the data mining field, mainly because algo-
rithms for several knowledge discovery tasks relies on various kinds of similarity queries [25,5],
and in the information retrieval field to support query refinement [26,27].

In this paper we deal with the top-k closest pairs query, though one of the two join operators
could be used to find a suitable solution of the other. Approaches to solve similarity join query
can be found in [20,6,17].

Top-k closest pairs query is a useful operator in many data mining applications. Given two
collections of objects, for example two repositories of documents or two files of patient analysis
data, this operator permits to find the most similar objects coming from these collections, thus
allowing to reveal the most related couples of objects contained in the groups. For example,
consider a case where one data set represents the patients with specific pathologies, while the
other collection contains patients under observation. A k-CPQ will discover which patients
under observation are most similar to patients of the other group and thus likely to have an
higher predisposition to develop a specific disease. This kind of information can be utilized
for prevention purposes. In agglomerative hierarchical clustering algorithms using the single
linkage strategy, the sum of the distances of the top-k closest pairs of objects from two partial
clusters could be used as a more robust measure of similarity than the distance of the closest
pair of objects. In spatial databases the importance of such an operator has been pointed
out in [10,34,11].

1.1. Related work

The (bichromatic) k closest pairs problem is a classical problem in computational geometry
[4,28,18,21]. A comprehensive overview on algorithms regarding closest pairs and related prob-
lems can be found in [28,32]. When the dimension is two this problem can easily be solved by
using the Voronoi diagrams [32]. However, when d > 2 the problem becomes more difficult. Agar-
wal et al. [1] gave an algorithm to compute the bichromatic closest pair by exploiting the relation-
ship they showed to exist between the bichromatic closest pair problem and the minimum
spanning tree problem.

Katoh and Iwano [18] presented algorithms for finding the k closest/farthest bichromatic pairs,
that iteratively reduces the search space by a half and uses higher order Voronoi diagrams. The
authors found that their algorithms were very fast but they were defined only for d = 2.
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When the dimensionality of the data is low or fixed, such algorithms are very efficient. However,
a thorough analysis reveals that their time requirements grow exponentially with the dimension.

In the context of spatial databases the top-k similarity closest pairs join problem was considered
for the first time as a novel problem in [14,15]. In these works the authors introduced the spatial
join operations distance join and distance semi-join and different incremental algorithms imple-
mented using R-trees [9]. These algorithms provide an answer as soon as new data is available,
and, after k elements of the result have been obtained, to have the (k + 1)th it is not necessary
to restart the method. They showed that these algorithms outperform non-incremental methods
only if k is small.

In [31] Shin and Moon enhanced the techniques proposed in [14] for the k-distance join and
incremental distance join by using multistage and plane-sweep techniques.

In [10,11] Corral et al. presented a number of different algorithms for discovering the k closest
pairs between two spatial data sets stored in two different R-trees. Basically, these algorithms tra-
verse the two trees and try to avoid the comparison of the points stored in all the possible pairs of
nodes by using several strategies. In particular they propose a pruning heuristic and two updating
strategies for minimizing the pruning distance and use them to design branch-and-bound algo-
rithms that solve the k closest pairs query problem. They reported experiments on real and uni-
formly distributed two-dimensional data, and studied the scalability of the methods when the data
set size and the number of pairs required increases.

In [34] Yang and Lin proposed a new index structure, the b-Rdnn tree, to solve different join
queries, as the k closest pairs query. The b-Rdnn tree is an R-tree like data structure augmented
with pre-computed nearest-neighbor information w.r.t. another b-Rdnn tree, such as the distance
of each point from its nearest neighbor in the other tree. Thus, when a point is inserted in one of a
pair of the b-Rdnn trees, a nearest-neighbor query must be performed. They showed the superi-
ority of their method w.r.t. the two mentioned above when the two data sets present a high degree
of overlap, where the overlap of two data sets is related to the overlapping area of the bounding
rectangles of the two data sets, and thus to the number of overlapping bounding rectangles asso-
ciated with the nodes of the R-trees storing the two data sets. In particular, they reported a poor
performance of the two previous algorithms when the overlap is 100%. They presented experimen-
tal results up to four-dimensional data sets.

We note that, although these algorithms can be used in any dimension, when the dimensionality
increases, the number of intersecting bounding rectangles associated with the nodes of the R-trees
of two overlapping data sets grows, while nearest-neighbor queries degenerate in a visit of all the
nodes of the R-tree. This means that, when the dimensionality is a parameter, a naive nested-loop
algorithm enumerating all the possible pairs of points from the two data sets can outperform
existing methods in the computation of the top-k closest pairs join, even for very small values
of the dimensionality. Then, it makes sense to search for an approximate solution in a reasonably
amount of time. In [23,2] two approximate algorithms for the computation of the top-k closest
pairs self-join of an input data set are described.

1.2. Contribution

In this paper we present a novel approximate algorithm to calculate the top-k closest pairs join,
according to one of the Minkowski metrics, of two large and high dimensional data sets. The
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algorithm is an extension of that presented in [2] to efficiently manage points coming from two
distinct data sets. The algorithm is particularly suitable in all those applications in which the total
number n of points from the two data sets overcomes the product dk, where d denotes the dimen-
sionality of the data sets.

The algorithm has worst case time complexity Oðd2nkÞ and space complexity OðndÞ and guar-
antees a solution within a Oðd1þ1

tÞ factor of the exact one, where t 2 {1,2, . . . ,1} denotes the Min-
kowski metrics Lt of interest.

It makes use of the concept of space filling curve to establish an order between the points of
the space. Space filling curves [29] are mappings from the d-dimensional space D = [0,1]d, to
the one-dimensional space I = [0,1] having the property that if two points from the unit inter-
val I are close then the corresponding images are close too in the hypercube D. The reverse
statement, however, is not true because two close points in D can have non-close inverse
images in I. The ordering induced by the space filling curve thus allows to obtain the
approximate nearest neighbors of each point by just considering its predecessors and its
successors along the unit interval. To guarantee a solution with a good degree of approxima-
tion, the algorithm performs at most d + 1 sorts and scans of shifted versions of the two data
sets.

During a scan, each point from one data set is compared with its closest points, according to the
space filling curve order, in the other data set, and the k closest pairs of points encountered are
stored in a priority queue like data structure. This corresponds to exploring a certain region of
the search space containing the point. If this region contains entirely the d-dimensional neighbor-
hood of radius r of the point, with r the distance associated with the kth closest pair stored in the
priority queue, then the point is deleted and it is not considered any more in the following itera-
tions. Thus, if all the points are pruned during a certain iteration, then the algorithm stops report-
ing the exact solution.

We show that the pruning ability of the algorithm is related to the nearest neighbor
distribution of the two data sets. Experimental results on real (up to 581,012 points in
60-dimensional) and synthetic (up to 200,000 points in 50-dimensional) data sets show that
our algorithm:

• behaves as an exact algorithm, i.e. it prunes all the points during its execution, in low dimen-
sional spaces (up to 6–7 dimensions);

• is able to prune the entire (or a considerable fraction of the) data set even when high dimen-
sional data sets, respecting certain separation conditions, are considered;

• in any case returns a solution within a small error (up to 1% in the experiments reported) to the
exact one.

A preliminary version of this work appeared in [3]. The rest of the paper is organized as follows.
In the following section we give some definitions that will be used throughout the paper. In Sec-
tion 3 we give a detailed description of the approximate algorithm. In Section 4 we describe exper-
imental results obtained with our algorithm both on real and synthetic data and we draw our
conclusions.
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2. Preliminaries

In this section we give preliminary definitions, notations and properties used in the paper.
Space filling curves [29] are mappings from the d-dimensional space D = [0,1]d (or any other

hypercube [0, ‘]d with ‘ > 0), the original space, to the one-dimensional space I = [0,1], the embed-
ded space. The construction of a space filling curve can be viewed as a recursive partitioning of the
original space in 2hd equal-sized sub-hypercubes among which a particular order is established. The
positive integer h identifies the resolution, or approximation, of the partitioning. This order induces
a mapping between one of the 2hd equally-sized sub-intervals of I and the coordinates of the d-
dimensional points. Fig. 1 shows the first four approximations of the Z-order space filling curve.

Given a set of points S from D and a point p in S we denote by SFC(p) the Space Filling Curve
(SFC) key of p, i.e. the value of the sub-interval of I associated with p by the space filling curve
mapping, and by SFCp(p,m) and SFCs(p,m) the mth predecessor and successor of p in S according
to their SFC key. Space filling curves have been studied and used in several fields [12,13,16,24,33].

A useful property of such a mapping is that if two points from the unit interval I are close then the
corresponding images are close too in the hypercube D. The reverse statement, however, is not true
because two close points inD can have non-close inverse images in I. This implies that the reduction
of dimensionality from d to one can provoke the loss of the property of nearness. In order to preserve
the closeness property, approaches based on the translation and/or rotation of the hypercubeD have
been proposed [30,23,33,22]. Such approaches assure the maintenance of the closeness of two d-
dimensional points, within some factor, when they are transformed into one-dimensional points.

In this work we use the sequence 0; 1
dþ1

; . . . ; d
dþ1

of shifts along the main diagonal of D, defined
in [8], to preserve the closeness property. Without loss of generality, we assume that the two given
Fig. 1. The first four approximations of the two dimensional Z-order space filling curve.
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data sets have been normalized so that they are constituted by points in [0,1]d. The original and
the shifted data points thus belong to [0,2)d, hence in the following we consider data sets on [0,2)d.

Definition 2.1. An r-region is an open ended hypercube in [0,2)d with side length of r = 21�s

having the form
Qd�1

i¼0 ½air; ðai þ 1ÞrÞ, where each ai, 0 6 i < d, and s are in N. The order of an
r-region of side r is the quantity �log2r.

Notice that every r-region contains one and only one contiguous segment of a space filling curve.

Definition 2.2. Given two distinct points p and q we denote by MinReg(p,q) the order of the
smallest r-region containing both p and q.

The function MinReg can be calculated in time OðdÞ working on the bit-string representation
of SFC(p) and SFC(q). We note that the valueMinReg(p,q) + 1 represents the order of the greatest
r-region containing p but not q.

Definition 2.3. Let p be a point, and let r be the side of a r-region. We denote by MinDist(p, r) the
value mindi¼1fminfmodðpi; rÞ; r �modðpi; rÞgg where mod(x, r) = x � bx/rcr, and pi denotes the
value of p along the ith coordinate.

HenceMinDist(p,r) is the perpendicular distance from the point p to the nearest face of the r-region
of side r containing p, i.e. a lower bound to the distance between p and a point lying out of this region.

Given a set of points S, a point p of S and the set I of the closest points of S according to the
space filling curve order, the following property permits to compute a lower bound to the distance
from p to any other point in S � I.

Proposition 2.1. Given a set of points S, a point p of S, and two integers a and b, let
I = {xi = SFCp(p, i)j1 6 i 6 a + 1} [ {yi = SFCs(p, i)j1 6 i 6 b + 1}, let sn be the maximum between
MinReg(p,xa+1) and MinReg(p,yb+1), let rn ¼ MinDistðp; 2�ðsnþ1ÞÞ, and let Sn = {q 2 Ijdist(p,q) 6
rn}. Then the distance between p and any point in S � Sn is greater than rn.
rn

sn

p
y

1

y2

y3

x1

x2

x3

Fig. 2. An example of application of Proposition 2.1.
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Proof. First, we note that, for each r-region, the intersection of the space filling curve with the r-
region results in a connected segment of the curve. Hence, to reach the points SFCp(p,m) and
SFCs(p,m) from p following the curve, we surely walk through the entire r-region of side sn con-
taining p. As the distance from p to the nearest face of its sn-region is rn, then the d-dimensional
neighborhood of radius rn of p is entirely contained in that region. It follows that the points in Sn

are all and the only points of S placed at a distance not greater than rn from p. Obviously, the
(jSnj + 1)th nearest-neighbor of p has a distance greater that rn from p. h

Fig. 2 shows an example of application of Proposition 2.1, and shows the sn-region, the distance
rn, and the neighborhood of radius rn of p, for a = b = 2.
3. Algorithm

In the following the two data sets from which the k pairs having the smallest distance are to be
extracted are denoted by B, named the blue data set, having size nB, and R, named the red data
set, having size nR, and we call blue (red, respectively) point a point coming from the blue (red,
respectively) data set. Before starting with the description of the algorithm, we define the concept
of point feature. A point feature is a record containing the fields point, col, key, lev, succ, succlev,
and lb, where: point is a point from the blue or red data set, col denotes the data set from which the
point comes, i.e. the blue data set (in this case col is set to 0) or the red data set (in this case it is set
to 1), key is the SFC key of point, lev and succlev are the order of an r-region, succ is an integer,
and lb is a distance representing the radius of a neighborhood of point.

The algorithm employs two main data structures: an array of point features f, having size
n = nB + nR, in which both the blue and red points are stored, and a priority queue CPQ of size
k, whose elements are triples of the form hp,q,di, where p is a blue point, q is a red point, and d is
the distance dist(p,q) from p to q. Every triple contained in CPQ represents one of the nearest
pairs met during the execution of the algorithm. In the following we will denote with Pairs(CPQ)
the set {hp,qijhp,q,di 2 CPQ}, with Pairs( f ) the set {hf [i].point, f [ j ].pointij1 6 i, j 6 n, f [i].col =
0, f [ j ].col = 1}, and with Jk(B,R) the k closest pairs in the set B · R.

To manage the priority queue CPQ the procedure CPQUpdate and the function CPQMax are
employed. The procedure CPQUpdate(CPQ,p,q,d) modifies CPQ as follows: unless the triple
hp,q,di is already present in CPQ, if the size of CPQ is less than k, then the triple hp,q,di is in-
serted in CPQ. Otherwise, if d is less than the maximum distance associated with a triple in CPQ,
than this triple is erased from CPQ and the triple hp,q,di is inserted in CPQ. The function CPQ-
Max(CPQ) returns the greatest distance between two pairs of points from CPQ, if CPQ contains
k elements, and 1, if CPQ contains less than k elements. Thus, its value is a lower bound to the
distance of the kth closest pair of points from the two data sets.

Let hp,qi be a pair in B · R. We say that hp,qi has been processed, if the function with para-
meters CPQUpdate(CPQ,p,q,dist(p,q)) has been executed by the algorithm. In particular, we
point out that the field lb of each point feature f [i] stored in f satisfies the following property.

Proposition 3.1. Let p = f[i].point be a blue (red, respectively) point, then, for each red (blue,
respectively) point q such that dist(p,q) 6 f[i].lb, either (1) the pair hp,qi has been processed, or (2)
the pair hp,qi does not belong to Jk(B,R).
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The algorithm Approx-SFC-CP-Join, shown in Fig. 3 (left) receives in input the two data sets B
and R, and the number k of top closest pairs from B · R to find. After the initialization of the
point feature array f, the procedure Normalize scales the two data sets so that they fit into the unit
hypercube. The priority queue CPQ is built and the main cycle of the algorithm, consisting of at
most d + 1 steps, starts. During each step the algorithm works on a shifted version of the original
data set. The shift value is stored in the global variable r and is equal to l

dþ1
, where l is the iteration

number, 0 6 l 6 d. We explain the single operations performed during each step of the main cycle.
Linearize. The procedure Linearize calculates the SFC key of each point f [i].point + r, stores

this value in f [i].key, and sorts the array f w.r.t. the key field. Thus, it performs the SFC mapping
of a shifted version of the two input data sets. After sorting, the procedure Linearize sets the val-
ues of the fields lev, succ, and succlev of each point feature f [i] in the following way:

• the value f [i].lev represents the order of the smallest r-region containing both f [i].point + r and
f [i + 1].point + r, i.e. it is set to MinReg( f [i].point + r, f [i + 1].points + r);

• if f [i].point is a blue (red, respectively) point, then f [ f [i].succ].point is the first red (blue, respec-
tively) point following f [i].point, according to the order induced by the SFC keys above calculated;
Fig. 3. Algorithm Approx-SFC-CP-Join (left) and procedure Approx-Join (right).



F. Angiulli, C. Pizzuti / Data & Knowledge Engineering 53 (2005) 263–281 271
• the value f [i].succlev represents the order of the smallest r-region containing both f [i].point + r
and f [ f [i].succ].point + r.

We note that, given a sequence of points p1, . . . ,pm ordered according to their SFC keys, then for
each pair pi, pj, 1 6 i < j 6 m, it holds that MinReg(pi,pj) = mini6k6j�1MinReg(pk,pk+1). Thus, in-
stead of calculating f [i].succlev by calling the function MinReg with the parameters f [i].point + r
and f [ f [i].succ].point + r, we can compute f [i].succlev in the following more efficient way: for
i = n, . . . , 1 (scan the array f in the reverse order), if f [i].col is different from f [i + 1].col, then set
f [i].succlev to f [i].lev, otherwise, set f [i].succlev to min( f [i].lev, f [i + 1].succlev).

Approx-Join. The procedure Approx-Join is reported in Fig. 3 (right). This procedure has
the parameter m, whose value is set to minðn; bn0n kcÞ, where n0 denotes the sum of the blue
and red input data set sizes, while n is the current size of the array f, that is the number of
non-pruned points. Thus m is inversely proportional to n. The value of m is the size of the
one-dimensional neighborhood, according to the space filling order, that, for each non-pruned
point, will be considered in the procedure. Thus, increasing the value of m it is possible to exam-
ine a wider neighborhood of each point, maintaining constant the number of distance computa-
tions per iteration. Note that the maximum value m can assume is

ffiffiffiffiffiffiffi
n0k

p
, which is reached when

n ¼ n0
n k.

This procedure performs a sequential scan of the array f. To store the last m + 1 blue and red
points encountered during the main cycle of the procedure, the arrays last, lasttop and lastcnt are
employed. In particular, last is a 2 · (m + 1) array (with row indices 0 and 1, and column indices
from 0 to m), while lasttop and lastcnt are two arrays of two elements (having indices 0 and 1, and
whose element values are initially set to zero). These arrays are managed so that last[0][lasttop[0]]
(last[1][lasttop[1]], respectively) stores the index of the element of the array f containing the
(m + 1)th blue (red, respectively) point preceding the current point f [i].point.

For each point feature f [i], the distances among the blue (red, respectively) point f [i].point and
the first m red (blue, respectively) points f [ j1].point, . . . , f [ jm].point (i < j1 < � � �< jm 6 n) following
f [i].point are calculated in the inner cycle. These points can be efficiently retrieved using the field
succ and the function GetSucc defined as follows: let GetSucc(j) be equal to j + 1, if
f [ j ].col = f [ j + 1].col, and equal to f [ j + 1].succ, otherwise. Then j1 is equal to f [i].succ, while each
ju+1, 1 6 u < m, is equal to GetSucc( ju).

We note that, according to Proposition 3.1, the procedure Approx-Join considers only the
points f [u].point, 1 6 u 6 n, such that f [u].lb 6 CPQMax(CPQ).

In practice, the inner cycle could stop before comparing the point f [i].point with all the
points f [ j1].point,. . .,f [ jm].points. Indeed, this cycle terminates after u� 2 {1, . . . ,m} iterations,
with u� < m if the minimum distance between f [i].point + r and the nearest face of the
greatest r-region containing this point but not f [ ju�].point + r, given by MinDist ðf ½i�:point þ
r; 2�ðMinRegðf ½i�:pointþr;f ½j�u�:pointþrÞþ1ÞÞ, is greater than CPQMax(CPQ). We note that, in this case, none
of the pairs neglected, i.e. none of the pairs hf ½i�:point; f ½ju� �:pointi; hf ½i�:point; f ½ju�þ1�:pointi; . . . ;
hf ½i�:point; f ½jm�:pointi, can belong to Jk(B,R), as the distances between these pairs of points are
certainly greater than the distance of the kth closest pair of points from the two data sets. The
function GetSuccLev is defined as follows: let GetSuccLev(i,j) be equal to f [i].lev, if i + 1 = j,
and equal to min( f [i].lev, f [i + 1].succlev), otherwise. Then GetSuccLev(ju�1, ju), 1 6 u 6 m, is
the value MinReg( f [ ju].point + r,f [ ju+1].points + r) (assume that j0 = i). Consequently, the value
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MinReg( f [i].points + r, f [ ju].point + r), 1 6 u 6 m, can be obtained taking the minimum over
GetSuccLev(j0, j1), . . . ,GetSuccLev(ju�1,ju).

At the end of the inner cycle, the field f [i].lb is updated. Let f [i].point be a blue (red, respec-
tively) point. We note that at the end of the inner cycle, j stores the index of the red (blue, respec-
tively) point following the last red (blue, respectively) point compared with f [i].point.
Furthermore, we note that f [last[1][lasttop[1]]].point + r( f [last[0][lasttop[0]]].point + r, respec-
tively) is the (m + 1)th red (blue, respectively) point preceding f [i].point + r. Hence, we can set
xa+1 to this point and yb+1 to f [ j ].point + r, and then apply Proposition 2.1 to obtain the radius
rn. If the value rn so obtained is greater than f [i].lb, then f [i].lb is set to rn. See Proposition 3.2 for
the proof that this update preserves the property defined in Proposition 3.1.

Prune. The procedure Prune deletes from f all the features f [i] such that f [i].lb > CPQ-
Max(CPQ) and updates consequently the values n, nB and nR.

The algorithm stops when nB or nR is equal to zero, or after at most d + 1 iterations. This ter-
minates the description of the algorithm.

3.1. Disk based algorithm

Basically the disk based implementation of the Approx-SFC-CP-Join algorithm has the same
structure of its main memory based counterpart. The main difference is that the array f is stored
in a sequential file F on disk. Thus, the procedure Linearize performs an external sort of F [19].
The procedure Approx-Join maintains a contiguous portion of F in a main memory circular buffer
B of size b. When a point feature f [ j ], subsequent to the current point feature f [i], is requested
through the function GetSucc, if f [ j ] is not present in the buffer B, then an auxiliary buffer Ba

of size ba � b is employed to temporarily store a contiguous portion of F, subsequent to that
stored in B, containing f [ j ]. Both the queue CPQ and the array last are stored in main memory.
In particular, this time last stores the point feature, nor its index (or record number). Indeed, when
the record rec of F storing the feature f [last[c][lasttop[c]]] (c 2 {0,1}) must be used to update the
field lb of the current point feature f [i], at the end of the main cycle of Approx-Join, rec could no
longer be present in the buffer B. Finally, the procedure Prune deletes the records of F storing the
point features f [i] such that f [i].lb > CPQMax(CPQ).
3.2. Algorithm properties

Now we state the main properties of the algorithm.

Proposition 3.2. During the execution of the algorithm Approx-SFC-CP-Join the following holds:
Jk(B,R) � Pairs(CPQ) [ Pairs(f).

Proof. We point out that the value of each f [i].lb is initially set to 0. Consider the first iteration
(l = 0) of the algorithm. Let f [i].point be a blue (red, respectively) point. At the end of the ith cycle
of Approx-Join, the value f [i].lb is updated with the radius rn of the greatest d-dimensional neigh-
borhood of f [i].point entirely contained in the greatest r-region containing p but not the (m + 1)th
red (blue, respectively) point preceding p nor the jth red (blue, respectively) point following p. We
note that the pairs hp,qi, where q is one of the j�1 red (blue, respectively) points following p, have



F. Angiulli, C. Pizzuti / Data & Knowledge Engineering 53 (2005) 263–281 273
been processed in the current cycle of Approx-Join. As regards the pairs hp,qi, where q is one of
the m red (blue, respectively) points preceding p, it could be that some of them have not been proc-
essed, since q was not compared with all the m blue (red, respectively) points following it. But, in
this case dist(p,q) > CPQMax(CPQ) and hp,qi does not belong to Jk(B,R). Thus, this update pre-
serves the property of Proposition 3.1.

Once the scan of f is terminated, the procedure Prune deletes from f the point features f [i]
having lb greater than CPQMax(CPQ). In CPQ there are the top-k closest pairs among those
examined. Thus, if f [i] is eliminated by Prune, then there does not exist a pair of points from B · R
including f [i].point that, at the same time, belongs to Jk(B,R) and was not examined.

Consider now a generic subsequent iteration (l > 0). Same considerations apply, but this time
some points from the two input data sets could be missing. From the previous reasoning, all the
pairs from B · R containing a point whose feature is not in f and potentially belonging to the
solution set Jk(B,R), were examined in the previous iterations. Thus the property is guaranteed. h

The above property proves the correctness of the algorithm. Furthermore, it establishes that the
pruning operated by the algorithm is lossless, that is the remaining points along with the approx-
imate solution found can be used for the computation of the exact solution.

In the following with the notation n�B, n
�
R, f

�, CPQ� we refer, respectively, to the value of the
variables nB, nR, f and CPQ at the end of the algorithm. The following proposition states an
important result regarding the algorithm, i.e. when the array f � is empty or contains only blue
(red, respectively) points than we can assert that the solution returned is the exact one.

Proposition 3.3. n�B ¼ 0 or n�R ¼ 0 implies that Jk(B,R) = Pairs(CPQ�).

Proof. The result follows immediately from Proposition 3.2. h

We denote by �d the value 2d
1
tð2d þ 1Þ, and by dk the distance between the two points compos-

ing the kth closest pair of points in B · R. As we use the family 0; 1
dþ1

; 2
dþ1

; . . . ; d
dþ1

of shifts defined
in [8], we are able to state an upper bound for the approximation error of the algorithm similar to
that stated in [23,2], that employed the same family of shifts. The following result is from [7].

Lemma 3.1. Suppose d is even. Let vðjÞ ¼ ð j
dþ1

; . . . ; j
dþ1

Þ 2 Rd . Then, for any point p 2 Rd and

r ¼ 2�sðs 2 NÞ, there exists j 2 {0, . . . , d} such that p + v(j) is 1
2dþ2

� �
-central in its r-region.

The previous lemma states that if we shift a point p of Rd at most d + 1 times in a particular
manner, i.e. if we consider the set of points {p + v(0), . . . ,p + v(d)}, than, in at least one of these
shifts, this point must become sufficiently central in an r-region, for each admissible value of r.

Proposition 3.4. CPQMax(CPQ�) 6 �ddk.

Proof. Let {hp1,q1i, . . . , hpk,qk i} be the set Jk(B,R), and let di = dist(pi,qi), for i = 1, . . . ,k. From
Lemma 3.1 it follows that, for each i = 1, . . . ,k, there exists an ri-region of side ri

4dþ4
6 di <

ri
2dþ2

(this inequality defines the greatest ri-region satisfying the following property) and an integer
ji 2 {0, . . . ,d} such that pi þ vðjiÞ is ð 1

2dþ2
Þ-central in the ri-region. Let p0i ¼ pi þ vðjiÞ and

q0i ¼ qi þ vðjiÞ. As a consequence the d-dimensional neighborhood of p0i of radius di is entirely con-
tained in that region, and both p0i and q0i belong to the ri-region.
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Notice that, as p0i is ð 1
2dþ2

Þ-central in the ri-region, this implies that the distance d from p0i and
each point belonging to its ri-region is at most d

1
tðri � ri

2dþ2
Þ i.e. d 6 d

1
t 2dþ1
2dþ2

ri.

Let rmax = max{r1, . . . , rk}. If CPQMaxðCPQÞ 6 d
1
t 2dþ1
2dþ2

rmax then each triple hp,q,di in CPQ� is

such that d 6 d
1
t 2dþ1
2dþ2

ð4d þ 4Þdk 6 �ddk. Now we show that CPQMax(CPQ�) 6 d
1
t 2dþ1
2dþ2

rmax. If

every pair hpi,qii is considered for insertion into CPQ then the result follows. Otherwise, there
exists a pair hpi,qii that was not examined in any iteration. In this case, from Proposition 3.2 it
follows that hpi,qii is in Pairs( f�), thus the point features associated with pi and qi certainly occurs
in f during the entire execution of the algorithm. Hence q0i is further than m positions from p0i
(w.l.o.g. assume that q0i comes after p0i) along the order induced by the space filling curve in the jith
iteration. For the properties of the space filling curves, the m pairs examined in the jith iteration
belong to the same ri-region containing both p0i and q0i, hence have distance less or equal than
d

1
t 2dþ1
2dþ2

ri.

As the algorithm determines at least k pairs having such property (at least one for each closest
pair), then the result follows. h

Thus, the algorithm guarantees an Oðd1þ1
tÞ approximation to the solution, where t = 1,2, . . . ,1

denotes the Lt metrics used to compute distances.
Now we define the worst case condition allowing a point to be pruned from the input data set

by the algorithm.

Proposition 3.5. The array f � does not contain at least those points p of B (R, respectively) such that
d > �2ddk, where d is the distance between p and its nearest neighbor in R (B, respectively).

Proof. Let p be a blue (red, respectively) point and let d be the distance between p and its nearest
red (blue, respectively) point q. Let r0 be the side of the greatest r-region satisfying the inequality

d
1
t 2dþ1
2dþ2

r0 < d. Let r0 ¼ 2�s0ðs0 2 NÞ, then s0 is such that log2
d1=t

d
2dþ1
2dþ2

� �
þ 1 P s0 > log2

d1=t

d
2dþ1
2dþ2

� �
.

From Lemma 3.1 it follows that there exists j 2 {0, . . . ,d} such that p + v(j) is ð 1
2dþ2

Þ-central in
the 2�s0 -region. When the above condition occurs, the nearest-neighbor of p is certainly out of
its r-region of side 2�s0 . Thus, in the worst case the value of f [i].lb is 2�s0

2dþ2
, where f [i] is the feature

s.t. f [i].point = p.
We know from Proposition 3.4 that the worst case approximation for the value of dk given by

the Approx-SFC-CP-Join algorithm is 2d
1
tð2d þ 1Þdk. Hence f [i].lb > CPQMax(CPQ) surely when

1
2dþ2

� dð2dþ2Þ
2d1=tð2dþ1Þ > 2d

1
tð2d þ 1Þdk i.e. for d > 4d

2
tð2d þ 1Þ2dk. h

Thus, let d be the distribution of the nearest-neighbor distances of the points of B (R, respec-
tively) w.r.t. the points of R (B, respectively). Proposition 3.5 asserts that the ability of the algo-
rithm to prune points increases when the distribution d accumulates around and above the value
�2ddk. Experimental results confirm that in practice the algorithm is able to prune points having
distance to their nearest neighbor significantly less than the worst case value above stated.

3.3. Time and space cost analysis

Now we give time and space cost analysis of the algorithm. We start with the time complexity.
Let n = nB + nR. The procedure Linearize requires Oðdn log nÞ time, while the procedure Prune
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requires OðnÞ time. The procedure Approx-Join requires Oðkðd þ log kÞÞ time to execute the inner
cycle, i.e. OðdÞ time to calculate the distance between two points and time Oðlog kÞ to update the
queue CPQ, and OðdÞ time to update the field lb, thus in total Oðnkðd þ log kÞÞ time. Thus, in the
worst case the algorithm runs in Oðdðdn log nþ nkðd þ log kÞÞÞ time. W.l.o.g., if we assume that
k P log n and d P log k, then the time complexity can be simplified in OððnB þ nRÞd2kÞ. We note
that the naive nested-loop, or brute force, algorithm enumerating all the possible pairs in the data
set requires OðnBnRðd þ log kÞÞ time to find the set Jk(B,R). Thus, if we assume that OðnBÞ ¼ OðnRÞ,
then the algorithm is particularly suitable in all the applications in which n overcomes the product
dk. As an example, if we search for the top 100 closest pairs in a 100-dimensional data set com-
posed by one million of points, using the Approx-SFC-Top-Join algorithm we expect to obtain the
approximate solution, together with the reduced data sets, with time savings of at least two order
of magnitude with respect to the brute force approach. Furthermore, we note that as the point
features considered in the current iteration could be a proper subset of those considered in the
preceding iteration, the effective execution time of the algorithm could be sensibly less than the
worst case.

Now we consider the space complexity. A point feature requires OðdÞ space. Indeed, the field
point is an array of d floating point numbers, the field key is a bit-array of size hd, where h is
the resolution of the space filling curve, resolution that can be considered fixed, while the other
fields have all constant size. Thus, the algorithm needs OðndÞ space to store the array f. The space
needed to store the queue CPQ is OðkÞ, while the space needed to any other auxiliary data struc-
ture is upper bounded by n. Thus, the overall space complexity of the algorithm is OððnB þ nRÞdÞ,
i.e. linear in the input size.
4. Experimental results

Next we describe the results of some experiments performed using the Approx-SFC-CP-Join

algorithm. We tested the algorithm both on synthetic and real data sets. The synthetic data sets
we used are composed by points uniformly distributed in the unit hypercube.

The real data sets are reported in Table 1. The data sets ColorMoments, CoocTexture and Col-

orHistogram contain image features extracted from a Corel image collection. 1 The CovType data
set contains forest cover type for 30 · 30 meter cells obtained from US Forest Service (USFS). 2

The Landsat data set is a collection of 40 large aerial photos divided into 64 · 64 tiles. 3 In par-
ticular, from each of these collections we obtained a pair of data sets by randomly partitioning the
collection into two equally sized sets, and then we searched for the top-k closest pairs of these two
data sets.

We note that both the synthetic and the real data sets employed are 100% overlapping. In all the
experiments presented we used the Z-order space filling curve (with resolution h = 8) and the
Euclidean distance.
1 See www.kdd.ics.uci.edu/databases/CorelFetures/CorelFeatures.html.
2 See www.kdd.ics.uci.edu/databases/covertype/covertype.html.
3 See www.vision.ece.ucsb.edu/datasets/index.html.

http://www.dke.cti.gr/People/ytheod/research/datasets/spatial.html
http://www.dke.cti.gr/People/ytheod/research/datasets/spatial.html
http://www.dke.cti.gr/People/ytheod/research/datasets/spatial.html


Table 1

Real data sets used in the experiments

Data set d n

ColorMoments 9 68,040

CoocTexture 16 68,040

ColorHistogram 32 68,040

CovType 55 581,012

Landsat 60 275,465
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Fig. 4. Execution times on four-dimensional uniform data sets.
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We point out that Approx-SFC-CP-Join behaves as an exact algorithm on low dimensional
data, up to 6–7 dimensions, as in these spaces it always prunes all the input points. Fig. 4 shows
the execution times 4 obtained computing the top-k pairs, with k 2 {10,100,1,000}, of the uniform
four-dimensional data set with nB (nR, respectively) varying from 10,000 to 1,000,000. In all these
experiments the algorithm pruned all the data sets points and, thus, returned the exact solution.
The figure also shows that the algorithm scales linearly w.r.t. the input size.

Increasing the dimensionality of the uniform data sets, the algorithm is no more able, in the
ranges of n and k above considered, to prune all the points. Thus, it makes sense to study the
approximation quality as a function of the dimension. The approximation error is the ratioPk

i¼1
d�iPk

i¼1
di
, where di and d�i denote, respectively, the true and the approximate, i.e. those returned

by the algorithm, ith closest pair distance in Jk(B,R), for i = 1, . . . ,k. Table 2 shows the approx-
imation error obtained running the algorithm on two uniform data sets, containing 100,000 points
each, and varying their dimensionality from 2 to 50. It is worth to note that the approximation
error obtained for 50-dimensional data sets was about 1% when k was set to 100. This confirms
4 We ran the experiments on a Pentium III 800MHz based machine.



Table 2

Approximation error on uniform data sets (nB = nR = 100,000)

d k = 1 k = 10 k = 100

2 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000

20 1.0000 1.0000 1.0012

50 1.0606 1.0311 1.0113
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that in practice the approximation error guaranteed by the algorithm is much better than the
worst case stated in the previous section.

Next, we present the experiments on real data sets. We point out that we obtained the exact

solution in all the experiments executed on the real data sets, also when they were not entirely
pruned. Fig. 5 shows the execution time on the real data sets considered, when k is varied from
1 to 100. The figure points out the very good performances of the algorithm for all the data sets
when k increases.

Furthermore, we point out that the algorithm found the exact solution after few iterations.
Table 3 shows the number of iterations performed by the Approx-SFC-CP-Join algorithm for
k = 100 and the approximation error after the first two iterations. Thus, in these experiments,
the algorithm computed the exact solution in at most two iterations, although it required more
iterations to meet the stop conditions.

The pruning ratio 1� n�Bþn�R
nBþnR

is the fraction of the data sets pruned by the algorithm. Table 4
shows the pruning ratio on the real data sets considered, when k is varied from 1 to 100. The table
points out the remarkable pruning ability of the algorithm. In fact for all the sets, except the
Landsat one when k equals 10% and 100%, the 100% of points were pruned.

Fig. 6 shows the number of points of the CovType data set (both blue and red) that at each
iteration must still be considered for k 2 {1,10,100,1000}. We note that already after the first
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Table 4

Pruning ratios on real data sets

k = 1 k = 10 k = 100

ColorMoments 1.00 1.00 1.00

CoocTexture 1.00 1.00 1.00

ColorHistogram 1.00 1.00 1.00

CovType 1.00 1.00 1.00

Landsat 1.00 0.84 0.85

Table 3

Approximation error after the first two iterations for k = 100 on real data sets

Iterations performed Iteration #1 Iteration #2

ColorMoments 3 1.0000 1.0000

CoocTexture 1 1.0000 1.0000

ColorHistogram 2 1.4057 1.0000

CovType 4 1.0055 1.0000

Landsat 61 1.0062 1.0000
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iteration the data set size sensibly reduces and only after three steps, for k = 1000 (or at most six
for k = 1), all the points have been pruned.

Finally, in Fig. 7, we show the behavior of the Approx-SFC-CP-Join algorithm on a spatial
data set relative to roads and streams of California. 5 The (2,249,727) blue points represents
the roads while the (98,451) red points are relative to the streams of California. We searched
for the top 10,000 closest pairs from the two data sets. Fig. 7 on the top depicts the two data sets
5 See www.dke.cti.gr/People/ytheod/research/datasets/spatial.html.

http://www.dke.cti.gr/People/ytheod/research/datasets/spatial.html


Fig. 7. Algorithm on a spatial data set.
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to join, and Fig. 7 in the middle shows the blue and red points remained after the first iteration.
The points representing the streets diminished from 2,249,727 to only 1246, and those represent-
ing the streams diminished from 98,451 to 678. The figure points out that the non-pruned points
accumulate around the boundaries of some r-regions. At the end of the second iteration, all the
points were pruned. Fig. 7 on the bottom reports the result of the join.
5. Conclusions

We presented an approximate algorithm to calculate the top-k closest pairs join of two large
high dimensional data sets. Experimental results show that in practice the algorithm guarantees
the exact solution for low dimensional data and a solution within a small error to the exact
one for high dimensional data.
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