
Gene Expression Biclustering

using Random Walk Strategies

Fabrizio Angiulli and Clara Pizzuti

ICAR-CNR
Via P. Bucci 41C

Università della Calabria
87036 Rende (CS), Italy

{angiulli,pizzuti}@icar.cnr.it

Abstract. A biclustering algorithm, based on a greedy technique and
enriched with a local search strategy to escape poor local minima, is pro-
posed. The algorithm starts with an initial random solution and searches
for a locally optimal solution by successive transformations that improve
a gain function, combining the mean squared residue, the row variance,
and the size of the bicluster. Different strategies to escape local min-
ima are introduced and compared. Experimental results on yeast and
lymphoma microarray data sets show that the method is able to find
significant biclusters.

1 Introduction

In the past recent years, DNA microarray technology has captured the attention
of scientific community because of its capability of simultaneously measure the
activity and interactions of thousands of genes. The relative abundance of the
mRNA of a gene under a specific experimental condition (or sample) is called
the expression level of a gene. The expression level of a large number of genes
of an organism under various experimental conditions can be arranged in a data
matrix, also known as gene expression data matrix, where rows correspond to
genes and columns to conditions. Thus each entry of this matrix is a real number
representing the expression level of a gene under a specific experiment. One of
the objectives of gene expression data analysis is to group genes according to
their expression under multiple conditions. Clustering [3, 10, 1] is an important
gene expression analysis method that has been extensively used to group either
genes, to search for functional similarities, or conditions, to find samples char-
acterized by homogeneous gene expression levels. However, generally, genes are
not relevant for all the experimental conditions, but groups of genes are often
co-regulated and co-expressed only under specific conditions. This important ob-
servation has lead the attention towards the design of clustering methods that
try to simultaneously group genes and conditions. The approach, named biclus-

tering, detects subsets of genes that show similar patterns under a specific subset
of experimental conditions.

Biclustering was first defined by Hartigan [6] and called direct clustering. His
aim was to find a set of sub-matrices having zero variance, that is with constant
values. This concept was then adopted by Cheng and Church [2] by introducing
a similarity score, called mean squared residue, to measure the coherence of
rows and columns in the bicluster. A group of genes is considered coherent if
their expression levels varies simultaneously across a set of conditions. Biclusters
with a high similarity score and, thus, with low residue, indicate that genes
show similar tendency on the subset of the conditions present in the bicluster.
The problem of finding biclusters with low mean squared residue, in particular
maximal biclusters with scores under a fixed threshold, has been proved to be
NP-hard [2] because it includes the problem of finding a maximum biclique in
a bipartite graph as a special case [4]. Therefore, Cheng and Church proposed
heuristic algorithms that are able to generate good quality biclusters.

In this paper a greedy search algorithm to find k biclusters with a fixed
degree of overlapping is proposed. The method is enriched with an heuristic
to avoid to get trapped at poor local minima. The algorithm starts with an
initial random bicluster and searches for a locally optimal solution by successive
transformations that improve a gain function. The gain combines the mean
squared residue, the row variance, and the size of the bicluster. In order to escape
poor local minima, that is low quality biclusters having negative gain in their
neighborhood, random moves with given probability are executed. These moves
delete or add a row/column on the base of different strategies introduced in the
method. To obtain k biclusters the algorithm is executed k times by allowing
to control the degree of overlapping among the biclusters. Experimental results
on two well known microarray data sets, yeast cell cycle and B-cell lymphoma,
show that the algorithm is able to find significant and coherent biclusters.

The paper is organized as follows. The next section defines the problem of
biclustering and the notations used. In Section 3 an overview of the existing
approaches to biclustering is given, section 4 describes the algorithm proposed,
and, finally, section 5 reports the experiments on the two mentioned data sets.

2 Notation and Problem definition

In this section the notation used in the paper is introduced and a formal defi-
nition of bicluster is provided [2]. Let X = {I1, . . . , IN} be the set of genes and
Y = {J1, . . . , JM} be the set of conditions. The data can be viewed as an N ×M

matrix A of real numbers. Each entry aij in A represents the relative abundance
(generally its logarithm) of the mRNA of a gene Ii under a specific condition Jj .

A bicluster is a sub-matrix (I, J) of A, where I is a subset of the rows X of
A, and J is a subset of the columns Y of A.

Let aiJ denote the mean of the ith row of the bicluster (I, J), aIj the mean
of the jth column of (I, J), and aIJ the mean of all the elements in the bicluster.
More formally,

aiJ = 1

|J|

∑

j∈J aij , aIj = 1

|I|

∑

i∈I aij , aIJ = 1

|I||J|

∑

i∈I,j∈J aij .

The volume vIJ of a bicluster (I, J) is the number of entries aij such that
i ∈ I and j ∈ J , that is vIJ = |I| × |J |.

The residue rij of an element aij is defined as rij = aij − aiJ − aIj + aIJ .
The residue of an element provides the difference between the actual value of
aij and its expected value predicted from its row, column, and bicluster mean.
The residue of an element reveals its degree of coherence with the other entries
of the bicluster it belongs to. The lower the residue, the higher the coherence.
The quality of a bicluster can be thus evaluated by computing the mean squared

residue rIJ , i.e. the sum of all the squared residues of its elements:

rIJ =

∑

i∈I,j∈J(rij)
2

vIJ

.

The mean squared residue of a bicluster, as otlined by Cheng and Church
in [2], provides the similarity score of a bicluster. Given a threshold δ ≥ 0, a
sub-matrix (I, J) is said a δ-bicluster, if rIJ < δ. The aim is then to find large
biclusters with scores below a fixed threshold δ. However, low residue biclusters
should be accompanied with a sufficient variation of the gene values with respect
to the row mean value, otherwise trivial biclusters having almost all constant
values could be determined. To this end the row variance varIJ of a bicluster
(I, J) is defined as

varIJ =

∑

i∈I,j∈J(aij − aiJ)2

vIJ

.

The final goal is to obtain large biclusters, with a relatively high variance,
and with mean squared residue lower than a given threshold δ.

3 Related work

A comprehensive survey on biclustering algorithms for biological data analysis
can be found in [8]. In the following the main existing proposals will be de-
scribed. As already mentioned in the introduction, Hartigan [6] first suggested
a partition based algorithm, called direct clustering, that splits the data matrix
to find sub-matrices having zero variance, that is with constant values. Hartigan
used the variance of a bicluster to evaluate its quality and his aim was to obtain
constant sub-matrices. However, he proposed to modify his algorithm to find
biclusters with coherent values in rows and columns. Cheng and Church [2] were
the first who introduced the new paradigm of biclustering to gene expression
data analysis. They proposed some greedy search heuristics that generate sub-
optimal biclusters satisfying the condition of having the mean squared residue
below a threshold δ. The heuristics start with the original data matrix and
add or delete rows and columns. The algorithms assume that the data matrix
doesn’t contain missing values and can find one or k biclusters. In the latter case,
in order to avoid to reobtain the same biclusters, the values of those elements
aij that have already been inserted in a bicluster are substituted with random
numbers. Yang et al. [11] extended the definition of δ-bicluster to cope with
missing values and to avoid problems caused by random numbers. In fact, they

experimented that random numbers in the methods of Cheng and Church can
interfere with the discovery of new biclusters, in particular for those that overlap
with those already obtained. They defined a probabilistic move-based algorithm
FLOC (FLexible Overlapped biClustering) that generalizes the concept of mean
squared residue and based on the concept of action and gain. Getz et al. [5]
presented the Coupled Two-Way Clustering algorithm that uses a hierarchical
clustering method separately on each dimension. Clusters of rows are used as
conditions for column clustering and vice-versa. Lazzeroni and Owen [7] intro-
duced the plaid model, where the concept of layers (bicluster) is used to compute
the values of the elements in the data matrix. The data matrix is described as
a linear function of layers corresponding to its biclusters. Tanay et al. presented
SAMBA (Statistical-algorithmic Method for Bicluster Analysis), a biclustering
algorithm that combines graph theory and statistics. The data matrix is repre-
sented as a bipartite graph where the nodes are conditions and genes, and edges
denote significant expression changes. Vertex pairs are associated with a weight,
and heavy subgraphs correspond to significant biclusters. Cho et al. [?] propose
two iterative co-clustering algorithms that use two similar squared residue mea-
sures, and based on the k-means clustering method. They formulate the problem
of minimizing the residue as trace optimization problems that provide a spectral
relaxation, used to initialize their methods.

4 Algorithm Description

In this section we present RandomWalkBiclustering, a biclustering algorithm
based on a greedy technique enriched with a local search strategy to escape poor
local minima. The basic schema of our method derives from the WSAT algorithm
of Selman et al. for the Satisfiability problem [9], opportunely modified to deal
with the biclustering problem. The algorithm starts with an initial random bi-
cluster B = (I, J) and searches for a δ-bicluster by successive transformations of
B, until a gain function is improved. The transformations consist in the change
of membership (called flip or move) of the row/column that leads to the largest
increase of the gain function. The gain function combines mean squared residue,
row variance, and size of the bicluster by means of user-provided weights wres,
wvar, and wvol. More formally, let

∆res =
resold − resnew

resold

, ∆var =
varold − varnew

varold

, ∆vol =
volold − volnew

volold

,

be the relative changes of residue, row variance, and volume when a row/column
is added/removed, where resold, varold, and volold (resp. resnew, varnew, and
volnew) are respectively the values of the residue, row variance and volume of B

before (after) the move. Then the function gain is defined as

gain = wres(2
∆res − 1) − wvar(2

∆var − 1) − wvol(2
∆vol − 1),

with wres+wvar+wvol = 1. This function assumes values in the interval [−1,+1].
In fact, relative changes ∆res, ∆var, and ∆vol range in the interval [−∞,+1],

Algorithm RandomWalkBiclustering
Input:

- matrix: a gene-expression matrix
- δ: stop when this value of residue is reached (0=stop at local minima)
- max flips: maximum number of iterations allowed
- method: type of random move
- p: probability of a random move (0 = no random move)
- wres, wvar, wvol: weight associated to the residue, row variance, and volume resp.
- rowmin, rowmax: minimum and maximum number of rows allowed in the bicluster
- colmin, colmax: minimum and maximum number of columns allowed in the bicluster
Method:

generate at random a bicluster that does not violate the constraints on the number
of rows and columns
set flips = 0, res = +∞, local minima = false

while flips < max flips and δ < res and not local minima

flips = flips + 1
if a random generated number is less than p then

execute a random move according to the method chosen, that does not
violate the constraints on the number of rows and columns, and update
the residue value res

else

let m be the move, that does not violate the constraints on the number
of rows and columns, with the maximum gain gain

if gain > 0 then

execute the move m and update the residue value res

else

set local minima = true

return the bicluster computed

Fig. 1. The RandomWalkBiclustering algorithm.

consequently the terms 2∆res, 2∆var, and 2∆vol range in the interval [0, 2], and
the whole function is assumes values between −1 and +1. The weights wres, wvar,
and wvol provide a trade-off among the relative changes of residue, row variance,
and volume. When wres = 1 (and thus wvar = wvol = 0), the algorithm searches
for a minimum residue bicluster, since the gain monotonically increases with the
residue of the bicluster. Decreasing wres and increasing wvar and wvol, biclusters
with higher row variance and larger volume can be obtained. Notice that when
the residue after a flip diminishes, and the row variance and volume increase,
∆res is positive, while ∆var and ∆vol are negative. Thus, when the gain function
is positive, RandomWalkBiclustering is biased towards large biclusters with a
relatively high variance, and low residue. A negative gain, on the contrary, means
a deterioration of the bicluster because there could have been an augmentation of
the residue or a decrease of the row variance or volume. During its execution, in
order to avoid get trapped into poor local minima (i.e. low quality biclusters with
negative gain in their neighborhood), instead of performing the flip maximizing

the gain, with a user-provided probability p the algorithm is allowed to execute
a random move. We introduced three types of random moves:

– NOISE: with probability p, choose at random a row/column of the matrix
and add/remove it to/from B;

– REMOVE: with probability p, choose at random a row/column of B and
remove it from B;

– REMOVE-MAX: with probability p, select the row/column of B scoring the
maximum value of residue, and remove it from B.

Thus, the NOISE is a purely random strategy that picks a row/column from
the overall matrix, and not only from the bicluster, and adds or removes the
row/column to the bicluster if it belongs or it does not belong to it. The RE-
MOVE strategy removes at random a row/column already present in the biclus-
ter, thus it could accidentally delete a worthless gene/condition from the current
solution, and the REMOVE-MAX removes that row/column already present
in the bicluster having the highest value of the residue, i.e. mostly contribut-
ing to worsen the gain. Figure 3 shows the algorithm RandomWalkBiclustering.
The algorithm receives in input a gene-expression matrix, a threshold value (δ)
for the residue of the bicluster, the maximum number of times (max flips)
that a flip can be done, the kind of random move the algorithm can choose
(method), the probability (p) of executing a random move, the weight to assign
to residue (wres), variance (wvar), and volume (wvol), and some optional con-
straint (rowmin, rowmax, colmin, colmax) on the size of the bicluster to find. The
flips are repeated until either a preset of maximum number of flips (max fips) is
reached, or a δ-bicluster is found, or the solution can not ulteriorly be improved
(get trapped into a local minima). Until the stop condition is not reached, it
executes a random move with probability p, and a greedy move with probabil-
ity (1 − p). In order to compute k biclusters, we execute k times the algorithm
Random-WalkBiclustering by fixing two frequency thresholds, frow and fcol, that
allow to control the degree of overlapping among the biclusters. The former binds
a generic row to participate to at most k·frow biclusters among the k to be found.
Analogously, fcol limits the presence of a column in at most k · fcol biclusters.
During the k executions of the algorithm, whenever a row/column exceeds the
corresponding frequency threshold, it is removed from the matrix and not taken
into account any more in the subsequent executions.
Computational complexity. The temporal cost of the algorithm is upper
bounded by

max flips × Cu × [(1 − p) × (N + M) + p]

where Cu is the cost of computing the new residue and the new row variance of
the bicluster after performing a move. In order to reduce the complexity of Cu,
we maintain, together with the current bicluster B = (I, J), the mean values
aiJ and aIj , for each i ∈ I, the summation

∑

j∈J a2
ij , and the total sum of the

row variances. The computation of the new residue of each element involves
recomputing the |I| + |J | mean values aiJ (1 ≤ i ≤ |I|) and aIj (1 ≤ j ≤ |J |)
after performing the move. This can be done efficiently, in time max{|I|, |J |}, by

exploiting the values maintained together with the current bicluster. Computing
the residue resnew of the new bicluster, requires the computation of the squares
of its element residues, a time proportional to the volume of the new bicluster.
We note that, usually, |I||J | ≪ NM . Ccomputing the new row variances can
be done in a fast way by exploiting the summations

∑

j∈J a2
ij already stored.

Indeed, if a column is added or removed, the new row variances can be obtained
quickly by evaluating the |I| expressions 1

|J|

∑

ij(a
2
ij) − a2

iJ (1 ≤ i ≤ |I|). For

example, if the qth column is added, in order to compute the new variance of
row i, the following expression must be evaluated:

1

|J|+1

(

∑

j∈J(a2
ij) + a2

iq

)

−
(

|J|aiJ+aiq

|J|+1

)2

.

Analogously if a column is removed. Otherwise, if a row is added (removed resp.)
the corresponding row variance must be computed and added (subtracted resp.)
to the overall sum of row variances. Before concluding, we note that the cost of
a random move is negligible, as it consists in generating a random number, when
the NOISE or REMOVE strategies are selected, while the row/column with the
maximum residue, selected by the REMOVE-MAX strategy, is computed, with
no additional time requirements, during the update of the residue of the bicluster
at the end of each iteration, and, hence, it is always immediately available.

5 Experimental Results

In this section we give experimental results to show the behavior of the Ran-

domWalkBiclustering algorithm. We selected two well known gene expression
data sets, the Yeast Saccharomyces cerevisiae cell cycle expression data set, and
the human B-cell Lymphoma data set. The preprocessed gene expression matri-
ces can be obtained from [2] at http://arep.med.harvard.edu/biclustering.
The yeast cell cycle data set contains 2884 genes and 17 conditions. The hu-
man lymphoma data set has 4026 genes and 96 conditions. The algorithm has
been implemented in C, and all the experiments have been performed on a
Pentium Mobile 1700MHz based machine. The experiments aimed at compar-
ing the three random move strategies when different probabilities and input
parameters are given and to discuss the advantages of each of them. In partic-
ular, we computed k = 100 biclusters varying the probability p of a random
move in the interval [0.1, 0.6], for two different configurations of the weights,
i.e. w1 = (wres, wvar, wvol) = (1, 0, 0) (dashed lines in Figure 2) and w2 =
(wres, wvar, wvol) = (0.5, 0.3, 0.2) (solid lines in Figure 2). Notice that wres = 1
and wvar = wvol = 0, means that the gain function is completely determined by
the residue value. We set max flips to 100, δ to 0, and the frequency thresh-
olds to frow = 10% and fcol = 100%, i.e. a row can participate in at most 10
biclusters, while a column can appear in all the 100 biclusters. The initial ran-
dom generated biclusters are of size 14 × 14 for the Yeast data set and of size
20 × 20 for the Lymphoma data set, while we constrained biclusters to have at
least rowmin = 10 rows and colmin = 10 columns. Figure 2 shows the behavior
of the algorithm on the two above mentioned data sets. From the top to the bot-
tom, the figures show the average residue, row variance and volume of the 100

biclusters computed, the average number of flips performed by the method, and
the average execution time. Figures on the left concern the Yeast data set, and
figures on the right the Lymphoma data set. We can observe that, as regards the
residue, the REMOVE-MAX method performs better than the two others, as
expected. In fact, its random move consists in removing the gene/condition hav-
ing the highest residue. Furthermore, increasing the random move probability p

improves the value of the residue. The residue of the NOISE method, instead, de-
teriorates when the probability increases. The REMOVE strategy, on the Yeast
data set is better than the NOISE one, but worse than the REMOVE-MAX. On
the Lymphoma data set, the value of the residue increases until p = 0.3 but then
it decreases. The residue scored for parameters w1 (dashed lines) is lower with
respect to that obtained for w2 (solid lines), for the two strategies NOISE and
REMOVE, while, for REMOVE-MAX the difference is negligible. As regards
the variance, we can note that the variance of REMOVE is greater than that
of NOISE, and that of NOISE is greater than that of REMOVE-MAX for both
w1 e w2. This is of course expected, since in the former case we do not consider
the variance in the gain function in order to obtain the biclusters, while in the
latter the weight of the variance is almost as important as that of the residue
(0.3 w.r.t 0.5). Analogous considerations hold for the volume, whose value is
higher for w2. Furthermore, the volume is almost constant for the NOISE strat-
egy, because the probability of adding or removing an element in the bicluster is
more or less the same, but it decreases for the REMOVE and REMOVE-MAX
strategies. These two strategies tend to discovery biclusters having the same size
when the probability p increases. As for the average number of flips, we can
note that 100 flips are never sufficient for the NOISE method to reach a local
minimum, while the other two methods do not execute all the 100 flips. In par-
ticular, the RANDOM-MAX strategy is the fastest since it is that which needs
less flips before stopping. As regards the execution time, the algorithm is faster
for w1 w.r.t w2, but, in general, the execution time decreases when the proba-
bility p increases and they are almost the same for higher values of p because the
number of random moves augments for both. Finally some consideration on the
quality of the biclusters obtained. We noticed that the NOISE strategy, which
works in a purely random way, gives biclusters with lower gain and it requires
more execution time. On the contrary, REMOVE-MAX is positively biased by
the removal of those elements in the bicluster having the worst residue, thus it
is able to obtain biclusters with higher values of residue and volume, while the
REMOVE strategy extract biclusters with higher variance. To show the quality
of the biclusters found by RandomWalkBiclustering, Figure 3 depicts some of
the biclusters discovered in the experiments of Figure 2 by using the REMOVE-
MAX strategy for (wres, wvar, wvol) = (0.5, 0.3, 0.2). The x axis corresponds to
conditions, while the y axis gives the gene expression level. The figures point out
the good quality of the biclusters obtained. In fact, their expression levels vary
homogenously under a subset of conditions, thus they present a high degree of
coherence.

6 Conclusions

The paper presented a greedy search algorithm to find overlapped biclusters en-
riched with a local search strategy to escape poor local minima. The proposed
algorithm is guided by a gain function that combines the mean squared residue,
the row variance, and the size of the bicluster through user-provided weights.
Different strategies to escape local minima have been introduced and compared.
Experimental results showed that the algorithm is able to obtain groups of genes
co-regulated and co-expressed under specific conditions. Future work will inves-
tigate the behavior of the algorithm for many different combinations of the input
parameters, in particular for the weights wres, wvar, and wvol employed in the
gain function, to study how the trade-off among residue, variance, and volume
affects the quality of the solution. We are also planning an extensive compari-
son with other approaches, and an analysis of the biological significance of the
biclusters obtained.

References

1. A. Ben.Dor, R. Shamir, and Z Yakhini. Clustering gene expression patterns. Jour-
nal of Computational Biology, 6(3-4):281–297, 1999.

2. Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings
of the 8th International Conference On Intelligent Systems for Molecular Biology
(ISMB’00), pages 93–103, 2000.

3. M. B. Eisen, P. Spellman, P. O. Brown, and P. Botstein. Cluster analysis and
display of genome-wide expression pattern. In Proceedings of the National Academy
of Sciences, USA 8, pages 14863–14868, 1998.

4. M. R. Garey and D.S. Johnson. Computers and intractability: A guide to the
Theory of NP-Completeness. San Francisco: Freeman, 1979.

5. G. Getz, E. Levine, and E. Domany. Coupled two-way cluster analysis of gene
microarray data. In Proceedings of the National Academy of Sciences, USA, pages
12079–12084, 2000.

6. J. A. Hartigan. Direct clustering of a data matrix. Journal of the American
Statistical Association, 67(337):123–129, 1972.

7. L. Lazzeroni and A. Owen. Plaid models for gene expression data. Technical
report, Stanford University, 2000.

8. S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data anal-
ysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics,
1(1):24–45, 2004.

9. B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search.
In Proceedings of the 12th Nation Conference on Artificial Intelligence (AAAI’94),
pages 337–343, 1994.

10. S. Tavazoie, J.D. Hughes, M. Campbell, R.J. Cho, and G.M. Church. Systematic
determination of genetic network architecture. Natural genetics, 22:281–285, 1999.

11. J. Yang, W. Wang, H. Wang, and P. Yu. Enhanced biclustering on expression data.
In Proceedings of the 3rd IEEE Conference On Bioinformatics and Bioengineering
(BIBE’03), pages 321–327, 2003.

0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700
Yeast data set (k=100)

Probability

Av
er

ag
e

re
sid

ue

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Lymphoma data set (k=100)

Probability

Av
er

ag
e

re
sid

ue

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Yeast data set (k=100)

Probability

Av
er

ag
e

va
ria

nc
e

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
10

2

10
3

10
4

10
5

Lymphoma data set (k=100)

Probability

Av
er

ag
e

va
ria

nc
e

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

1500
Yeast data set (k=100)

Probability

Av
er

ag
e

vo
lu

m
e

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

1500

2000

2500
Lymphoma data set (k=100)

Probability

Av
er

ag
e

vo
lu

m
e

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
30

40

50

60

70

80

90

100
Yeast data set (k=100)

Probability

Av
er

ag
e

nu
m

be
r o

f f
lip

s

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
40

50

60

70

80

90

100
Lymphoma data set (k=100)

Probability

Av
er

ag
e

nu
m

be
r o

f f
lip

s

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25
Yeast data set (k=100)

Probability

Av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

ec
]

NOISE
REMOVE
REMOVE−MAX

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

45

50
Lymphoma data set (k=100)

Probability

Av
er

ag
e

ex
ec

ut
io

n
tim

e
[s

ec
]

NOISE
REMOVE
REMOVE−MAX

Fig. 2. Average residue, variance, volume, number of flips and execution time for Yeast
(on the left) and Lymphoma (on the right) data sets.

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

1 2 3 4 5 6 7 8 9 10 11
−100

−80

−60

−40

−20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

150

Fig. 3. Biclusters obtained by using the REMOVE-MAX strategy with
(wres, wvar, wvol) = (0.5, 0.3, 0.2) in the experiments of Figure 2. The first two
rows show 8 biclusters of the Yeast data set (p = 0.3), while the subsequent two rows
show 8 biclusters of the Lymphoma data set (p = 0.5). From left to right and from top
to bottom the values of (residue, variance, volume) are the following: (70.14, 590.65,
460), (99.51, 705.58, 530), (160.89, 834.79, 360), (113.47, 674.25, 630), (83.04, 439.81,
310), (136.31, 788.27, 580), (180.03, 545.23, 518), and (111.01, 356.24, 640) for the
Yeast data set, and (214.63, 1414.45, 150), (169.96, 1626.74, 165), (366.18, 2012.5,
190), (181.34, 2135.5, 140), (323.17, 2472.65, 170), (182.45, 1499.95, 160), (200.24,
3412.19, 130), and (172.94, 1197.03, 220) for the Lymphoma data set.

