
COPYRIGHT NOTICE

This is the author’s version of the work. The definitive version
was published in Data Mining and Knowledge Discovery (DAMI),
20(2):290-324, March 2010.

The final publication is available at www.springerlink.com.

DOI: http://dx.doi.org/10.1007/s10618-009-0159-9.

i

http://dx.doi.org/10.1007/s10618-009-0159-9


Noname manuscript No.
(will be inserted by the editor)

Distance-based outlier queries in data streams: the novel
task and algorithms?

Fabrizio Angiulli · Fabio Fassetti

Received: date / Accepted: date

Abstract This work proposes a method for detecting distance-based outliers
in data streams under the sliding window model. The novel notion of one-time
outlier query is introduced in order to detect anomalies in the current window
at arbitrary points-in-time. Three algorithms are presented. The first algo-
rithm exactly answers outlier queries, but has larger space requirements. The
second algorithm is derived from the exact one, reduces memory requirements
and returns an approximate answer based on estimations with a statistical
guarantee. The third algorithm is a specialization of the approximate algo-
rithm working with strictly fixed memory requirements. Accuracy properties
and memory consumption of the algorithms have been theoretically assessed.
Moreover experimental results confirmed the effectiveness of the proposed ap-
proach and the good quality of the solutions.
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1 Introduction

In many emerging applications, such as fraud detection, network flow monitor-
ing, telecommunications, data management and others, data arrive continu-
ously, and it is either unnecessary or impractical to store all incoming objects.
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In this context, an important challenge is to find the most exceptional objects
among the incoming data.

A data stream is a large volume of data coming as an unbounded sequence,
where, typically, older data objects are less significant than more recent ones,
and thus should contribute less. This is because characteristics of the data
may change during the evolution, and then the most recent behavior should
be given larger weight. As a matter of fact, stream monitoring applications
are usually interested in analyzing the most recent behavior.

Therefore, data mining on data streams is often performed based on certain
time intervals, called windows. Two main different data streams window mod-
els have been introduced in literature: landmark window and sliding window
[17].

In the first model, some time points (called landmarks) are identified in the
data stream, and analysis are performed only for the stream portion which falls
between the last landmark and the current time. Then, the window is identified
by a fixed endpoint and a moving endpoint.

In contrast, in the sliding window model, the window is identified by two
sliding endpoints. In this approach, old data points are thrown out as new
points arrive. In particular, a decay function is defined, that determines the
weight of each point as a function of elapsed time since the point was observed.
A meaningful and extensively used decay function is the step function. Let W
be a parameter defining the window size and let t denote the current time,
the step function evaluates to 1 in the temporal interval [t−W + 1, t], and 0
elsewhere.

In all window models the main task is to analyze the portion of the stream
within the current window, in order to mine data stream properties or to
single out objects conforming with characteristics of interest. In this work, the
problem of detecting objects, called outliers, that are abnormal with respect to
data within the current window, is addressed. Specifically, the sliding window
model with the step function as decay function is adopted.

There exist several approaches for the problem of singling out the objects
mostly deviating from a given collection of data [10,8,19,12,18,1,25]. In par-
ticular, distance-based approaches [19] exploit the availability of a distance
function relating each pair of objects of the collection. They identify as out-
liers the objects lying in the most sparse regions of the feature space.

Distance-based definitions [19,27,4] represent an useful tool for data analy-
sis [20,15,23]. Given parameters k and R, an object is a distance-based outlier
if less than k objects in the input data set lie within distance R from it [19].
This definition is slightly different from the original one provided in [19], which
is: Given parameters p and R, an object is a distance-based outlier if at least
fraction p of the objects in the input data set lies greater than distance R from
the object. However, let n be the number of objects in the input data set, by
setting k = (1− p) · n the two definitions coincide.

Distance-based outliers have robust theoretical foundations, since they are
a generalization of different statistical tests. Furthermore, they are compu-
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tationally efficient, since distance-based outlier scores are monotonic non-
increasing functions of the portion of the data already explored.

The approach proposed in this work introduces a novel concept of querying
for outliers. Specifically, previous work (see for example [31,2,28]) deals with
continuous queries, that are queries evaluated continuously as data stream
objects arrive. Conversely, we deal with one-time query, that are queries eval-
uated once over a point-in-time (for a survey on data streams query models
the reader is referred to [9]).

The underlying intuition is that, due to evolution, stream characteristics
can change over time and, hence, evaluating an object for outlierness when it
arrives, although meaningful, can be reductive in some contexts and sometimes
misleading. On the contrary, by classifying single objects when a data analysis
is required, the concept drift, which is a typical and challenging characteristics
of data streams, can be captured. To this aim, it is needed to support queries
at arbitrary points-in-time, called query times, which classify the whole popu-
lation in the current window instead of the single incoming data stream object.
To our best knowledge this is the first work performing outlier detection on
windows at query time.

The example below shows how the concept drift can affect the outlierness
of the data stream objects.

Example 1 Consider the following figures.
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The two diagrams represent the evolution of a data stream of one-dimensional
objects. The abscissa reports the time of arrival of the objects, while the
ordinate reports the value assumed by each object. Let the number k of nearest
neighbors to consider be equal to 3, and let the window size W be equal to 7.
The dashed line represents the current window.

The diagram on the left reports the current window at time t7 (compre-
hending the interval [t1, t7]), whereas the diagram on the right reports the
current window at time t12 (comprehending the interval [t6, t12]).

First of all, consider the diagram on the left. Due to the data distribution
in the current window at time t7, the object o7 is an inlier since it has four
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neighbors in the window. Hence, if an analysis were required at time t7, the
object o7 would be recognized as an inlier. Note that at time t7 the object o7
belongs to a very dense region.

Nevertheless, when stream evolves the data distribution changes. The re-
gion, which o7 belongs to, becomes sparse in the current window since data
stream objects assume lower values. In the figure on the right the evolution
of the stream up to time t12 is reported. In the novel distribution, o7 has no
neighbors. Then, if an analysis were required at time t12, o7 should be rec-
ognized as an outlier. Note that at time t12 the object o7 belongs to a very
sparse region.

In this work, three algorithms for detecting distance-based outliers in data
streams are presented. The first algorithm exactly answers outlier queries at
any time, but has larger space requirements. The second algorithm is derived
from the exact one, reduces memory requirements and returns an approximate
answer based on estimations with a statistical guarantee. The third algorithm
is a specialization of the approximate algorithm working with strictly fixed
memory requirements.

The contribution of this work can be summarized as follows:

– the novel task of data stream outlier query is introduced;
– an exact algorithm, named STORM1, which efficiently detects distance-

based outliers in the introduced model, is presented;
– an approximate algorithm, named STORM2, based on a trade off between

spatial requirements and answer accuracy is derived from the exact one,
which approximates object outlierness with a statistical guarantee;

– a fixed memory approximate algorithm, named STORM3, is introduced,
which guarantees that the memory occupancy does not exceed an user
provided buffer size;

– theoretical analysis of the technique is accomplished, assessing the accu-
rateness of the introduced approximate methods, and their memory con-
sumption;

– by means of experiments on both real and synthetic data sets, the efficiency
and the accuracy of the proposed techniques are shown.

The rest of the work is organized as follows. Section 2 briefly surveys related
approaches and algorithms for detecting outliers in data sets and data streams.
Subsequent Section 3 formally states the data stream outlier query problem
which this work deals with. Section 4 describes the three algorithms here in-
troduced. Approximation properties and memory requirements are studied
in Section 5. In Section 6 the implementation details of the algorithms are
provided and both space and time costs are derived. Section 7 illustrates ex-
perimental results. Finally, Section 8 presents conclusions.

2 Related Work

Distance-based outliers have been first introduced by Knorr and Ng [19]. Given
parameters k and R, an object is a distance-based outlier if less than k objects
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in the input data set lie within distance R from it. As already noted above,
this definition is a solid one, since it generalizes several statistical outlier tests.
Some variants of the original definition and suitable mining algorithms have
been subsequently introduced in literature. In particular, Ramaswamy et al.
[27], in order to rank the outliers, introduced the following definition: given k
and n, an object o is an outlier if no more than n−1 other objects in the dataset
have higher value for Dk than o, where Dk(o) denotes the distance of the kth
nearest neighbor of o. Subsequently, Angiulli and Pizzuti [4,5,3], with the aim
of taking into account the whole neighborhood of the objects, proposed to rank
them on the basis of the sum of the distances from the k nearest neighbors,
rather than considering solely the distance to the kth nearest neighbor. In this
work we will deal with the original definition provided in [19].

Several clever distance-based methods are designed to efficiently mine distance-
based outliers [19,21,27,11,16,29,6,7], but they work in the batch framework,
that is under the assumption that the whole data set is stored in secondary
memory and multiple passes over the data can be accomplished. Hence, they
are not suitable for data streams. Although most of the methods to detect
anomalies in data mining consider the batch framework, some efforts have
been made to address the problem of online outlier detection, and some of the
proposed approaches are briefly surveyed next.

In [31] the SmartSifter system is presented. It addresses the problem from
the viewpoint of the statistical learning theory. In particular, this system em-
ploys an online discounting learning algorithm to learn a probabilistic model
representing the data source. Every time a datum is input, SmartSifter mea-
sures the outlierness of the datum by evaluating how much it is deviated with
respect to a normal pattern. Specifically, the input datum o is defined as an
outlier if the model learned after seeing o is significantly different from the
model previously known.

In [2] the focus is on detecting anomalous events in a data stream in the
presence of many spurious but similar patterns, where spurious events are rare
in the stream but are likely to occur more frequently than the anomalous ones.
Specifically, the proposed algorithm is a supervised one. Indeed, authors as-
sume that an external source reporting actual anomalies is available. Then,
when a rare event (which can be either anomalous or spurious) occurs, after a
lag the external source reports it as anomalous or not. The introduced detec-
tion algorithm detects rare events on the basis of their deviation from expected
values computed on historical trends, and tries to distinguish anomalous events
from the spurious ones by exploiting the history of previous event occurrences.
Clearly, such a prediction must be accomplished before the anomaly is noti-
fied by the external source. After the lag, the external source returns the right
classification of the event, and, then, the algorithm exploits it to improve the
accuracy of its future predictions. The algorithm must be initially fed with
some historical data. At each event occurrence the algorithm performs two
fundamental steps: first, it decides if the event is rare with respect to the his-
torical trend; second, it classifies the event as either anomalous or spurious.
Both checks are accomplished by using a statistical deviation based measure.
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In [28] the problem of identifying outliers in streaming data acquired by a
sensor network is addressed. In order to identify outliers, the distance-based
and the MDEF [26] definitions are employed1. Authors adopt the sliding win-
dow model and propose a method to estimate the data distribution of sensor
readings belonging to the most recent window. A hierarchically organization
of the sensor network is assumed, where each parent node collects the mea-
surements coming from its children. Authors have to tackle two difficulties:
first, the sensor capabilities are limited, and, second, data coming from dif-
ferent sensors have to be combined together. These issues are dealt with by
introducing a distributed framework to approximate data distributions. The
estimation of the density distribution function f is performed by means of ker-
nel density estimators and it is stored in the sensors. The distribution function
f is exploited in order to identify an incoming object as an outlier. Specifically,
when the distance-based outlier definition is employed, the number of objects
(values) in the neighborhood of the observation at hand is evaluated through
f , and, if this number is below an user defined threshold, then the observa-
tion is reported as an outlier. Conversely, when the MDEF-based definition is
dealt with, the technique requires that each sensor stores, together with the
estimation of the density distribution function f , a local estimation model for
its input data stream. By means of these functions the deviation factor of the
observation at hand can be evaluated.

It is worth to note that all the techniques above discussed, detect anomalies
online as they arrive, and one-time queries are not supported. Moreover, in [2]
an external source able to detect anomalies in the stream is required.

3 Statement of the Problem

In this section, the Data Stream Outlier Query Problem is formally stated.
First of all, the definition of distance-based outlier is recalled [19].

Definition 1 (Distance-Based Outlier) Let S be a set of objects, obj an
object of S, k a positive integer, and R a positive real number. Then, obj is
a distance-based outlier (or, simply, an outlier) if less than k objects in S lie
within distance R from obj.

Objects lying at distance not greater than R from obj are called neighbors
of obj.

A data stream DS is a possible infinite series of objects . . . , objt−2, objt−1,
objt, . . ., where objt denotes the object observed at time t. We will interchange-
ably use the term identifier and the term time of arrival to refer to the time
t at which the object objt was observed for the first time.

1 The Multi Granularity Deviation Factor (MDEF) is a measure of how the density in the
neighborhood of an object compares with that of the objects in its neighborhood. An object
is an outlier if the difference of its MDEF and the local average is statistically significant.
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We assume that data stream objects are elements of a semimetric space,
a generalized metric space on which is defined a distance function but the
triangular inequality is not required to hold.

In the following we will use d to denote the space required to store an
object, and ∆ to denote the temporal cost required for computing the distance
between two objects.

Given two object identifiers tm and tn, with tm ≤ tn, the window DS[tm, tn],
is the set of n−m+1 objects objtm , objtm+1, . . ., objtn . The size of the window
DS[tm, tn] is n−m+ 1.

Given a window size W , the current window is the window DS[t−W+1, t],
where t denotes always the time of arrival of the last observed data stream
object.

An expired object is an object whose identifier id is less than the lower limit
of the current window, i.e. such that id < t−W + 1.

Now, we are in the position of defining the main problem we are interested
in solving.

Definition 2 (Data Stream Outlier Query) Given a data stream DS, a
window size W , and parameters R and k, the Data Stream Outlier Query is:
return the distance based outliers in the current window.

The time, at which a data stream outlier query is requested, is called query
time.

In the following the neighbors of an object obj preceding it in the stream
and belonging to the current window, are called preceding neighbors of obj,
whereas the neighbors of an object obj following it in the stream and belonging
to the current window are called succeeding neighbors of obj.

According to Definition 1, an inlier is an object obj having at least k
neighbors in the current window. In other words, let α be the number of
preceding neighbors of obj and β be the number of succeeding neighbors of
obj, obj is an inlier if α+ β ≥ k.

Let obj be an inlier. Since during stream evolution objects expire, the
number of preceding neighbors of obj decreases. Therefore, if the number of
succeeding neighbors of obj is less than k, obj could become an outlier de-
pending on the stream evolution. Conversely, since obj will expire before its
succeeding neighbors, inliers having at least k succeeding neighbors will be
inliers for any stream evolution. Such inliers are called safe inliers.

Example 2 The following diagram represents the evolution of a one-dimensional
data stream. Let k be 3 and let W be 16.
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Consider the current window at time t18 (the dashed one): both o9 and o11
are inliers, since o9 has four neighbors (o5, o10, o14, o15), and also o11 has four
neighbors (o3, o4, o6, o13). But, since o9 has three succeeding neighbors, it is a
safe inlier, while o11 is not.

Indeed, consider for example instant t22 (the current window is the solid
one). The object o9 is still an inlier: object o5 expired, but o9 has still three
(succeeding) neighbors. Conversely, o11 is now an outlier: objects o3, o4 and
o6 expired, and now it has only one neighbor.

4 Algorithm

In this section the algorithm STORM, standing for STream OutlieR Miner, is
described.

Three variants of the method are presented. When the entire window can
be allocated in memory, the exact answer of the data stream outlier query
can be computed. The algorithm STORM1, working in this setting, is able
to exactly answer outlier queries at any time (Section 4.1). However, in some
applications, interesting windows can be so large that do not fit in memory, or
in some other scenarios only limited memory can be allocated. In these cases,
approximations must be employed. Algorithms STORM2 (Section 4.2) and
STORM3 (Section 4.3) are designed to work in the latter setting by introducing
effective approximations in STORM1.

4.1 Exact algorithm (STORM1)

The algorithm STORM1 is shown in Figure 1. It consists of two procedures: the
Stream Manager and the Query Manager. The former procedure receives the
incoming data stream objects and efficiently updates a suitable data structure
that will be exploited by the latter procedure to effectively answer outlier
queries.
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Procedure Stream Manager

Input: DS is the data stream;
W is the window size;
R is the neighborhood radius;
k is the number of neighbors.

Method:
For each data stream object obj with identifier t:

1. remove the oldest node noldest from ISB;
2. create a new node ncurr, with ncurr.obj = obj, ncurr.id = t,

ncurr.nn before = ∅, ncurr.count after = 1;
3. perform a range query search with center obj and radius R

into ISB. For each node nindex returned by the range query:
(a) increment the value nindex.count after;
(b) update the list ncurr.nn before with the object identifier

nindex.id;
4. insert the node ncurr into ISB.

Procedure Query Manager

Output: the distance-based outliers in the current window;
Method:

1. For each node n stored in ISB:
(a) let prec neighs be the number of identifiers stored in

n.nn before associated with non-expired objects, and let
succ neighs be n.count after;

(b) if prec neighs + n.succ neighs ≥ k then mark n.obj as
inlier, else mark it as an outlier;

2. return all the objects marked as outliers.

Fig. 1: The STORM1 distance-based outlier detection algorithm.

In order to maintain a summary of the current window, a data structure,
called ISB (standing for Indexed Stream Buffer) and storing nodes (nodes
are defined next), is employed. Each node is associated with a different data
stream object.

ISB provides a function range query search, that, given an object obj (also
called center) and a real number R ≥ 0 (also called radius), returns the nodes
in ISB associated with objects whose distance from obj is not greater than R.
We will detail the implementation of ISB in Section 6.

Now, the definition of node is provided. A node n is a record consisting of
the following information:

– n.obj : a data stream object;
– n.id : the identifier of n.obj, that is the arrival time of n.obj;
– n.count after : the number of succeeding neighbors of n.obj. This field is

exploited to recognize safe inliers.
– n.nn before: a list, having size at most k, containing the identifiers of the

most recent preceding neighbors of n.obj. At query time, this list is ex-
ploited to recognize the number of preceding neighbors of n.obj. We assume
that both the operation of ordered insertion of a novel identifier in the list
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and the operation of search of an identifier in the list are executed in time
O(log k) (see [22] for a suitable implementation).

The Stream Manager takes as input a data stream DS, a window size W , a
radius R, and the number k of nearest neighbors to consider.

For each incoming data stream object obj, a novel node ncurr is created
with ncurr.obj = obj. Then a range query search with center ncurr.obj and
radius R is performed in ISB, that returns the nodes associated with the
preceding neighbors of obj stored in ISB.

For each node nindex returned by the range query search, since the object
obj is a succeeding neighbor of nindex.obj, the counter nindex.count after is
incremented. Moreover, since the object nindex.obj is a preceding neighbor of
obj, the list ncurr.nn before is updated with nindex.id.

If the counter nindex.count after becomes equal to k, the object nindex.obj
becomes a safe inlier. Thus, it will not belong to the answer of any future out-
lier query. Despite this important property, a safe inlier cannot be discarded
from ISB, since it may be a preceding neighbor of a future stream object. More-
over, the list nindex.nn before is deleted in order to reduce memory occupancy.
Finally, the node ncurr is inserted into ISB. This terminates the description of
the procedure Stream Manager.

In order to efficiently answer queries, when invoked by the user, the Query
Manager performs a single scan of ISB. In particular, for each node n of ISB,
the number prec neighs of identifiers stored in n.nn before associated with
non-expired objects is determined. This is accomplished in O(log k) time by
performing a search in the list n.nn before of the identifier closest to the value
t −W + 1, that is the identifier of the oldest object in n.nn before belonging
to the current window.

As for the number succ neighs of succeeding neighbors of n.obj, it is stored
in count after. Thus, if prec neighs + succ neighs ≥ k then the object n.obj
is recognized as an inlier, otherwise it is an outlier and it is included in the
answer of the outlier query.

4.2 Approximate algorithm (STORM2)

The exact algorithm requires to store all the window objects. If the window
is so huge that does not fit in memory, or only limited memory can be allo-
cated, the exact algorithm could be not employable. However, as described in
the following, the algorithm described in the previous section can be readily
modified to reduce the space required.

Figure 2 shows the algorithm STORM2. In this algorithm two approxima-
tions are introduced with respect to STORM1.

Firstly, in order to severely reduce the space occupied, we do not store all
the window objects into ISB. In particular, objects belonging to ISB can be
partitioned in outliers and inliers. Among the latter kind of objects there are
safe inliers, that are objects that will be inliers in any future stream evolution.
As already observed, despite safe inliers cannot be returned by any future
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Procedure Stream Manager

Input: DS is the data stream;
W is the window size;
R is the neighborhood radius;
k is the number of neighbors.

Method:
For each data stream object obj with identifier t:

1. if the oldest node noldest of ISB expires, then remove the
node noldest from ISB;

2. create a new node ncurr, with ncurr.obj = obj, ncurr.id = t,
ncurr.count after = 1, and set count before = 0;

3. perform a range query search with center obj and radius R
into ISB. For each node nindex returned by the range query:

(a) increment the value nindex.count after;
(b) if nindex.count after ≥ k (that is nindex.obj is a safe

inlier), increment the value count before;

4. set ncurr.fract before = count before
safe inliers

, where safe inliers is the

number of safe inliers into ISB, and insert the node ncurr

into ISB;
5. if the number of safe inliers in ISB is greater than ρW ,

then remove from ISB randomly selected safe inliers till their
number reduces to ρW .

Procedure Query Manager

Output: the distance-based outliers in the current window;
Method:

1. For each node n stored in ISB:
(a) let prec neighs be n.fract before · (W − t+n.id), and let

succ neighs be n.count after;
(b) if prec neighs+ succ neighs ≥ k then mark n.obj as in-

lier, else mark it as an outlier;
2. return all the objects marked as outliers.

Fig. 2: The STORM2 distance-based outlier detection algorithm.

outlier query, they have to be kept in ISB in order to correctly recognize
outliers, since they may be preceding neighbors of future incoming objects.

However, as shown in subsequent Section 5.1, it is sufficient to retain in
ISB only a fraction of safe inliers to guarantee an highly accurate answer to
the outlier query. Thus, in order to maintain in ISB a controlled fraction ρ
(0 ≤ ρ ≤ 1) of safe inliers, the following strategy is adopted.

During stream evolution, an object obj of the stream becomes a safe inlier
when exactly k succeeding neighbors of obj arrive. At that time, if the total
number of safe inliers into ISB exceeds ρW , then a randomly selected safe
inlier of ISB is removed. The random selection policy adopted guarantees that
safe inliers surviving into ISB are uniformly distributed in the window.

To answer one-time queries, both outliers and non-safe inliers, which are
objects candidate to become outliers if the stream characteristics change, have
to be maintained in ISB.
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Note that for meaningful combinations of the parameters R and k, the
number of outliers and of non-safe inliers, amounts to a negligible fraction of
the overall population, as it will be both theoretically (in Section 5.3) and
empirically (in Section 7) shown.

Thus, the number of nodes in ISB can be assumed approximately equal to
ρW. In the following section it will be discussed how to compute an optimal
value for ρ in order to obtain a statistical guarantee on the approximation error
of the estimation of the number of preceding neighbors of each data stream
object.

The second approximation consists in reducing the size of each node by
avoiding storing the list of the k most recent preceding neighbors. This is
accomplished by storing in each node n, instead of the list n.nn before, just
the fraction n.fract before of previous neighbors of n.obj observed in ISB at
the arrival time n.id of the object n.obj. The value n.fract before is determined
as the ratio between the number of preceding neighbors of n.obj in ISB which
are safe inliers and the total number of safe inliers in ISB, at the arrival time
of n.obj.

At query time, in order to recognize outliers, a scan of ISB is performed,
and, for each stored node n, the number of neighbors of n.obj in the current
window has to be evaluated. Since only the fraction n.fract before is stored
now in n, the number of preceding neighbors of n.obj in the whole window at
the current time t has to be estimated.

Let α be the number of preceding neighbors of n.obj at the arrival time
of n.obj. Assuming that they are uniformly distributed along the window, the
number of preceding neighbors of n.obj at the query time t can be estimated
as

prec neighs = α · W − t+ n.id

W
.

Note that n.fract before does not give directly the value α, since it is computed
by considering only the objects stored in ISB and, thus, it does not take into
account removed safe inliers preceding neighbors of n.obj. However, α can be
safely (see next section) estimated as

α ≈ n.fract before ·W.

Summarizing, the number of preceding neighbors of n.obj at the query time t
can be estimated as

prec neighs = n.fract before · (W − t+ n.id).

Recall that to classify objects, the sum between the estimated number of its
preceding neighbors and the number of succeeding neighbors is computed. It is
worth to point out that the number of succeeding neighbors is not estimated,
since n.count before provides the true number of succeeding neighbors of n.obj.
Therefore as stream evolves, the above sum approaches the true number of
neighbors in the window.
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4.3 Approximate fixed-memory algorithm (STORM3)

It follows from the definition of Data Stream Outlier Query that in order to
have the chance to return the correct solution to any future outlier query, all
the objects which are currently outliers or non-safe inliers should be maintained
into the ISB data structure.

The algorithm described in the preceding section reduces the memory by
storing only a controlled fraction ρ of the safe inliers, with ρ depending on the
approximation error estimation fixed by the user. As already noted above, for
meaningful values of the parameters R and k the outliers and non-safe inliers
amount to a negligible fraction of the overall population. In the next section,
we will study the memory requirements of the above algorithm and provide
conditions under which the memory used by it can be approximated to ρW .
However, in some situations, that is when the above mentioned conditions do
not hold, the number of non-safe inliers can be significant with respect to the
value ρW .

Hence, in this section we introduce a fixed-memory approximation algo-
rithm which takes care of the above scenario. The algorithm introduces a
further approximation, concerning in estimating, among the non-safe inliers
currently stored in the memory buffer, the objects most likely to become safe
inliers.

The algorithm STORM3 builds on the algorithm STORM2 presented in the
preceding section. It receives in input the additional parameter ν ∈ (0, 1], with
ν > 2ρ, representing the number of nodes that can be accommodated into the
available memory buffer, that is νW . The memory buffer always maintains at
most ρW nodes associated with safe inliers. The remaining part of the buffer,
whose size is (ν − ρ)W , maintains safe inliers, non-safe inliers, and outliers.

When the memory buffer is full and a new object arrives, an object of the
buffer has to be released in order to free space for the incoming object. In this
case, if the number of safe inliers exceeds ρW , then a randomly selected safe
inlier is discarded in order to free space. Otherwise, that is if the number of
safe inliers into the buffer is less than or equal to ρW , a priority is assigned
with each non-safe inlier and outlier, in order to single out the object to be
discarded.

This priority reflects the probability of the object of becoming a safe inlier.
To this aim, the field count after is exploited, and the probability that the
object n.obj will become a safe inlier is estimated as n.count after

t−n.id . In order to
make this estimation robust, objects whose identifier is greater than t − ρW
are not considered for deletion from the buffer. This strategy guarantees an
highly accurate estimation of the likelihood of an object to become a safe
inlier under the assumption that the population do not change, that is if the
ρW succeeding neighbors represent a random sample of the future population.
Indeed, in this case, the size of the sample employed for the estimation is at
least the same than that employed for the estimation of preceding neighbors,
and then the same statistical bound on the estimation error holds.
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As for the algorithm pseudo code, STORM2 and STORM3 differ only
for Step 5 of Figure 2. In particular, such step is modified in STORM3 in
order to perform the procedure described in the following. When the memory
buffer becomes full, if the number of safe inliers is greater than ρW , then
a randomly selected safe inlier is removed from ISB. Otherwise, the priority
π(n) = n.count after

t−n.id is assigned to each node n stored in ISB associated with
an outlier or a non-safe inlier n.obj such that n.id < t− ρW , and the node n∗

such that π(n∗) is maximum is removed from ISB.

5 Algorithm Properties

In this section the properties of the approximate algorithms are presented.
In particular, first statistical bounds for the approximation error are stated
(Section 5.1), then the misclassification probability law is derived (Section 5.2),
and finally the memory requirements of STORM2 is analyzed by providing a
way to estimate the number of safe inliers when the data stream distribution
is known (Section 5.3).

5.1 Approximation error bounds

Next it is studied how to set the parameter ρ in order to obtain safe bounds
on the approximation error estimation.

Let W be the window size, let w be the number of safe inliers in ISB, let α
be the exact number of preceding neighbors of an object at its time of arrival,
let α̃ be the number of preceding neighbors of the object in ISB which are safe
inliers at its time of arrival, and let µ denote the ratio α

W .
In order to determine an optimal value for ρ, a value for w = ρW such that

α̃
w is a good approximation for µ has to be determined. Formally, the following
property has to be satisfied. For given δ > 0 and 0 < ε < 1, we want to have:

Pr

[∣∣∣∣ α̃w − µ

∣∣∣∣ ≤ ε

]
> 1− δ. (1)

Since ISB contains a random sample of the window safe inliers, a safe bound
for w can be obtained from the Lyapounov Central Limit Theorem.

This theorem asserts that, for any λ,

lim
w→∞

Pr

[
α̃− wµ√
wµ(1− µ)

≤ λ

]
= Φ(λ)

where Φ(λ) denotes the cumulative distribution function of the normal distri-
bution.

Consequently, if w is large enough, then the following relationship holds:

Pr

[
α̃− wµ√
wµ(1− µ)

≤ λ

]
≈ Φ(λ). (2)
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Now, the result that will allow us to get the needful safe bound for w can be
formally presented.

Theorem 1 For any δ > 0 and 0 < ε < 1, if w satisfies the following inequal-
ity

w >
µ(1− µ)

ε2

(
Φ−1

(
1− δ

2

))2

(3)

then it satisfies (1).

Theorem 1 is a direct consequence of the central limit theorem (see [30] for
details).

Proof Equation (2) is equivalent to:

Pr

[
α̃− wµ√
wµ(1− µ)

> λ

]
≈ 1− Φ(λ) (4)

and, since Φ(−λ) = 1− Φ(λ), also to

Pr

[
α̃− wµ√
wµ(1− µ)

≤ −λ

]
≈ 1− Φ(λ) (5)

Starting from these relations and by setting

λ =
ε
√
w√

µ(1− µ)

it can be obtained that, for any 0 < ε < 1:

Pr

[
α̃

w
> µ+ ε

]
≈ 1− Φ

(
ε
√
w√

µ(1− µ)

)
(6)

Pr

[
α̃

w
< µ− ε

]
≈ 1− Φ

(
ε
√
w√

µ(1− µ)

)
(7)

The goal (1) is equivalent to

Pr

[∣∣∣∣ α̃w − µ

∣∣∣∣ > ε

]
< δ

and, then, to

Pr

[
α̃

w
> µ+ ε

]
+ Pr

[
α̃

w
< µ− ε

]
< δ

which, using relations (6) and (7), can be rewritten as(
1− Φ

(
ε
√
w√

µ(1− µ)

))
+

(
1− Φ

(
ε
√
w√

µ(1− µ)

))
< δ

To conclude, from the above inequality, relation (3) is obtained.
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Although the provided bound depends on the unknown value α, it can
be safely applied by setting µ to 1

2 . Therefore, in order to satisfy (1), by
substituting w = ρW in Formula (3), it follows that it is sufficient to set ρ to
the value

ρ =
1

4ε2W

(
Φ−1

(
1− δ

2

))2

. (8)

It is worth to note that the bound for w given by expression (3) does not
depend on the window size W . Furthermore, since in expression (8) the un-
known value µ is safely set to 1

2 , whenever µ is different from 1
2 the property

(1) is guaranteed for values of ε and δ better than those used to compute w.
In particular, the two following inequalities hold:

Pr

[∣∣∣∣ α̃w − µ

∣∣∣∣ ≤ ε

]
> 1− δ∗, and (9)

Pr

[∣∣∣∣ α̃w − µ

∣∣∣∣ ≤ ε∗
]
> 1− δ. (10)

In the first inequality, δ∗ is obtained from the following equation

1

4ε2

(
Φ−1

(
1− δ

2

))2

=
µ(1− µ)

ε2

(
Φ−1

(
1− δ∗

2

))2

,

whereas, in the second one, ε∗ is obtained from

1

4ε2

(
Φ−1

(
1− δ

2

))2

=
µ(1− µ)

ε∗2

(
Φ−1

(
1− δ

2

))2

.

Note that, if the true value for µ is 1
2 , then δ∗ = δ and ε∗ = ε.

It follows that, with probability 1 − δ, the maximum error err that can
made in computing α is

err = Wε∗ = W · 2ε
√
µ(1− µ).

This value provides the maximum error made (with probability 1− δ) in esti-
mating the total number of neighbors of an object when it arrives.

Now, we are interested in determining when the above error will cause a
misclassification, i.e. when an inlier (resp., an outlier) will be estimated as an
outlier (resp., an inlier).

For an object obj having identifier id the number of true preceding neigh-
bors, when it arrives, is µW . As stream evolves, some preceding neighbors
expire, and, assuming they are uniformly distributed along the window, their
number becomes µ · (W − t+ id) in the portion of the stream preceding obj in
the current window.

To correctly classify obj, if the sum between the number α of preceding
neighbors of obj and the number β of its succeeding neighbors is greater (resp.
smaller) than k in the current window, then also the estimated value for α
plus the number β of succeeding neighbors should be greater (resp. smaller)
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than k. Formally, let W = W − t+ id be the number of objects of the current
window preceding the object obj, let α = µW be the true value of preceding
neighbors of obj in the current window, let β be the number of its succeeding
neighbors, and let 2Wε

√
µ(1− µ) be the error err. If α+ β is greater than k,

then the following inequality should hold:

µW − 2Wε
√
µ(1− µ) + β > k. (11)

Assuming that the distribution of succeeding neighbors is the same as the
distribution of preceding neighbors, β can be approximated to µ(W − W ),
where (W −W ) is the portion of the stream in the current window following
obj. Thus, by making µ explicit in Formula (11), it follows that for

µ >
kW + 2W

2
ε2 +

√
(kW + 2ε2W

2
)2 − k2(W 2 + 4W

2
ε2)

W 2 + 4W
2
ε2

= µup (12)

an inlier is correctly recognized with probability 1− δ.

Analogously, if α+ β < k, starting from

µW + 2Wε
√
µ(1− µ) + β < k,

with the same assumption stated above, we obtain that for

µ <
kW + 2W

2
ε2 −

√
(kW + 2ε2W

2
)2 − k2(W 2 + 4W

2
ε2)

W 2 + 4W
2
ε2

= µdown (13)

an outlier is correctly recognized with probability 1− δ.

It can be concluded that, if an object obj has more than µupW or less than
µdownW neighbors, it is correctly classified with probability 1− δ.

Contrariwise, if the number of neighbors of the object obj is within the
range [µdownW,µupW ], then we have an estimation error at most equal to

2Wε
√
µ(1− µ) that could lead to a misclassification. Both the error and the

range are small and directly proportional to ε. Moreover, they depend on the
current time t. As t increases, the error goes to zero and the interval tends to
be empty.

Before concluding, it is worth to recall that object classification depends
also on the number of succeeding neighbors of the object, whose true value is
known.

5.2 Misclassification probability

In this section we will compute the probability that STORM2 misclassifies an
inlier (Section 5.2.1) and an outlier (Section 5.2.2).
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5.2.1 Inlier misclassification probability

We compute the probability of misclassifying an object which is an inlier. First,
we consider the case in which the query is submitted when the object enters the
current window. Suppose that the actual number of preceding neighbors µW
of this object is greater than k. Then, we want that also the estimated number
of preceding neighbors is greater than k. Therefore, the error err = µW− α̃

wW
should be such that µW − err ≥ k.

Equation (2) can be rewritten as

Pr

[√
w

W

W (α̃− wµ)

w
√

µ(1− µ)
≤ λ

]
≈ Φ(λ),

and, then, as

Pr

[
−err ·

√
w

W
√

µ(1− µ)
≤ λ

]
≈ Φ(λ).

Finally, we obtain

Pr

[
−err ≤ λ

W
√

µ(1− µ)√
w

]
≈ Φ(λ).

By setting

γ = −λ
W
√
µ(1− µ)√
w

,

we get

Pr [err > γ] ≈ Φ

(
−γ

√
w

W
√

µ(1− µ)

)
.

The probability of misclassifying an inlier is the probability that err > µW−k,
hence, by substituting µW − k to γ, we eventually get

Pr [err > µW − k] ≈ Φ

(
(k − µW )

√
w

W
√
µ(1− µ)

)
. (14)

Under the hypothesis that the stream is not currently changing its distribu-
tion, we can generalize formula (14) to obtain the misclassification probability
for an inlier with a generic age.

In particular, the probability of misclassifying an inlier can be estimated
by means of the law of total probability:

Pr [misclass] =
∑
η

Pr
[
missclass

∣∣ age = η
]
Pr[age = η],

where the term Pr[age = η] can be assumed equal to 1/W , while the term
Pr
[
missclass

∣∣ age = η
]
can be derived by generalizing Equation (14), which
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represents the case age = 0. Specifically, by following the same line of reasoning
above shown, it can be obtained that for an object having age = η,

Pr [err > γ | age = η] ≈ Φ

(
−γ

√
w

W
√
µ(1− µ)

)
(15)

holds, where the error is defined as err = µW − α̃
wW .

In this case, the error should be such that µW−err ≥ k, where W = W−η
is the number of objects in the current window preceding the object having age
η and k is the difference between k and the number of succeeding neighbors of
the considered object. Then, the probability of misclassifying an inlier having
age η is the probability that err > µW−k. The last inequality can be rewritten
as:

err > µ(W − η)− (k − β).

Since the number β of succeeding neighbors is µη, then the above inequality
simplifies to err > µW − k, which is the same condition as above.

Hence, by substituting γ = µW − k into Equation 15, we obtain

Pr
[
missclass

∣∣ age = η
]
= Φ

(
(k − µW )

√
w

(W − η)
√
µ(1− µ)

)
,

and, finally we get:

Pr [misclass] =
1

W

W∑
η=1

[
Φ

(
(k − µW )

√
w

(W − η)
√

µ(1− µ)

)]
. (16)

Example 3 For example, let the window size W = 10,000, let δ = 0.1, let
ε = 0.016, and let k = 100. From Equation (3) we obtain that w = 1088 and,
hence, that ρ ≈ 0.11. The probability of misclassifying the inliers computed
by means of Equation (16) is reported in the following figure:
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It is clear from the above figure that the probability of misclassifying an inlier
drastically decreases as the number of neighbors becomes greater than k.

5.2.2 Outlier misclassification probability

In this section the probability of misclassifying an object which is an outlier
is computed. This probability can be obtained by following a line of reasoning
very similar to that employed in the preceding section.

In this case, the error is defined as err = α̃
wW −µW , and it should be such

that µW + err < k, where W = W − η is the number of objects in the current
window preceding the object having age η, and k is the difference between k
and the number of succeeding neighbors.

Then, the probability of misclassifying an outlier aged η is the probability
that err ≥ k − µW . The last inequality can be rewritten as:

err ≥ (k − β)− µ(W − η),

and since the number of succeeding neighbors β is µη, then we get

err ≥ k − µW.

The probability of misclassifying an outlier can be estimated exploiting the
law of total probability:

Pr [misclass] =
∑
η

Pr
[
missclass

∣∣ age = η
]
Pr[age = η],

where the term Pr[age = η] can be assumed equal to 1/W , whereas the term
Pr
[
missclass

∣∣ age = η
]
is computable through an analysis similar to the

previous case. Hence, we get that:

Pr
[
missclass

∣∣ age = η
]
= Φ

(
(µW − k)

√
w

(W − η)
√

µ(1− µ)

)
,

and, finally, that

Pr [misclass] =
1

W

W∑
η=1

[
Φ

(
(µW − k)

√
w

(W − η)
√
µ(1− µ)

)]
. (17)

Example 4 Consider the same setting as example 3. The probability of mis-
classifying the outliers computed by means of (17) is reported in the following
figure:
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Hence, the probability of misclassifying an outlier follows a trend similar to
that of misclassifying an inlier.

5.3 Estimation of the number of safe inliers

In order to determine the memory requirements of STORM2, in this section
we estimate the number of safe inliers falling into the current window.

The probability of being a safe inlier is the probability of having at least k
succeeding neighbors. For an object obj we can think each incoming object as
an independent Bernoulli trial, where the success is that the incoming object
is a neighbor of obj, and the number of trials is the age of obj. Then, the
probability for an object having age η of being a safe inlier can be modeled as
the probability of having more than k−1 successes in η trials, or, equivalently,
as the probability of not having less than k successes in η trials. Hence, the
probability of being a safe inlier follows a binomial distribution:

Pr[o is safe | age = η] = 1−
k−1∑
i=0

pnear(o)
i(1− pnear(o))

η−i,

where pnear is the probability of a success, which corresponds to the probability
that an incoming object is a neighbor of the object o.

The probability of being a safe inlier can, then, be estimated exploiting the
law of total probability:

Pr[o is safe] =Pr[o is safe | age = η] · Pr[age = η] =

=
1

W

W−1∑
η=k

(1−Bk−1,η(pn(x))) .
(18)
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where

Bk,n(p) =

k∑
i=0

pi(1− p)n−i

is the cumulative distribution function of the binomial distribution with pa-
rameters k (the number of successes) and n (the number of trials).

The probability pnear can be computed once the incoming data probability
density function f is known. In particular, the probability pnear(x) that an
object x has a neighbor is

pnear(x) = F (x+R)− F (x−R),

where F denotes the cumulative distribution function associated with the data
distribution f . Hence, the probability of being a safe inlier can be eventually
obtained as

Pr[safe] =

∫ +∞

−∞
Pr [X = x ] · Pr [x is safe] dx ,

that is

Pr[safe] =
1

W

∫ +∞

−∞
f(x)

W−1∑
η=k

(1−Bk−1,η(F (x+R)− F (x−R))) dx. (19)

In the following we compute the value of the above probability for two
common real data distributions, that are the Normal distribution and the
Poisson distribution. Interestingly, it will be shown that the great majority of
the objects in the current window are safe inliers. This result will be confirmed
by the experimental results.

First, we need to recall the concept of unification between outlier defi-
nitions, introduced in [19] to formalize the concept that the distance-based
outlier definition generalizes some statistical definitions for outlier. Specifi-
cally, the distance-based outlier definition unifies another definition Def for
outlier, if there are specific values for parameters k = k̂ · W (k̂ ∈ [0, 1]) and
R such that an object is an outlier according to Def if and only if it is a
distance-based outlier with parameters k and R.

5.3.1 Normal distribution

The normal distribution is one of the most important continuous probability
distributions, since it models quantitative phenomena in many fields. The rea-
son of its importance is mainly due to the central limit theorem which asserts
that the normal distribution approximately occurs in many situations. For ex-
ample, light intensity from a single source varies with time and it is usually
assumed to be normally distributed, and also the thermal noise is approxi-
mately normally distributed. Moreover, normality is the central assumption of
the mathematical theory of errors.
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Consider a stream following a normal distribution with mean µ and stan-
dard deviation σ. In this case the probability density function is f(x) =

1
σ
√
2π

e−
(x−µ)2

2σ2 and the cumulative distribution function is Φ(x) [24].

In [19], it is shown that distance-based outlier definition unifies the statis-
tical outlier test for the normal distribution defined by [10] with parameters

k̂ = 0.0012 and R = 0.13σ.
As an example, consider a standard normal distribution. If W = 10,000,

then k = 12 and R = 0.13. By substituting these values in (19), we get that
Pr[safe] = 0.9699, that is the number of safe inliers is expected to be the
97.0% of the objects within the current window.

5.3.2 Poisson distribution

The popularity of the Poisson distribution is due to the fact that it models
Poisson processes. Indeed, these processes apply to a large number of phenom-
ena of discrete nature, which are well suited to be modeled with a stream. For
example, the number of phone calls at a call center per minute, the number
of times a web server is accessed per minute, or the emission of particles by a
radioactive substance are all moldable as Poisson processes.

Consider a stream following a Poisson distribution with mean µ = 3. In

this case the probability density function is f(x) = 3xe−3

x! and the cumulative

distribution function is F (x) = Γ(bx+1c,3)
bxc! where Γ is the incomplete gamma

function [24].
First we recall a well-known outlier test for Poisson distributions: let T be

a set of objects Poisson distributed with parameter µ = 3.0; an object x of T
is an outlier if and only if x > 8 [10]. According to this test about the 3.8h
objects are outliers. The distance-based outlier definition unifies this statistical
test with parameters k̂ = 0.0027 and R = 0.5.

Indeed, if x is an object of T , the expected percentage of neighbors within
distance R from x is Pr[x− 0.5 ≥ X ≥ x+0.5], where X is a random variable
distributed according to a Poisson distribution. Since the Poisson distribution
is discrete, Pr[x−0.5 ≥ X ≥ x+0.5] is equal to Pr[X = x], that corresponds to
the Poisson probability density function f evaluated in x. Hence, the expected
percentage of neighbors for x is f(x). From this equation, it can be obtained
that for x > 8 the percentage of neighbors is expected to be lower than 0.0027
and then, that if x is greater than 8, x is expected to be an outlier.

As an example, if W = 10,000, then k = 27 and R = 0.5. By substituting
these values in (19), we get that Pr[safe] = 0.9719, that is the number of safe
inliers is expected to be the 97.2% of the objects within the current window.

6 Implementation Details and Cost Analysis

In this section the implementation of the ISB data structure is detailed, and
next, temporal and spatial costs of STORM are analyzed.
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6.1 Implementation details

In the following, we assume that the stream objects belong to a certain metric
space, but the algorithms work also with semi-metric spaces.

The ISB data structure is implemented as a pivot-based index [13]. It per-
forms proximity search in any metric space making use of a certain number of
objects (also called pivots) selected among the objects stored into the index.
Distances among pivots and objects stored into the index are precalculated
when a novel pivot is generated.

When a range query with center obj and radius R is submitted to the index,
the distances between the pivots and the query object obj are computed. The
precalculated distances are exploited to recognize the index objects lying at
distance greater than R from obj. For each index object obj′, if there exists
a pivot p, such that |dist(obj, p) − dist(obj′, p)| > R, then, by the triangular
inequality, it is known that dist(obj, obj′) > R, and obj′ is ignored. Otherwise,
obj′ is marked as a candidate neighbor and if dist(obj′, obj) ≤ R holds, then
obj′ is returned as a true neighbor of obj. By using this kind of technique the
range query search returns the list of neighbors of obj.

The performances of pivot-based indexes are related to the number of piv-
ots employed. In particular the larger is the number of pivots, the more ac-
curate is the list of candidates, and then the lower is the number of distances
computed. Nevertheless, the cost of querying and building the index increases.
In this work the number of pivots used is logarithmic with respect to the index
size. In order to face concept drift, the older pivot is periodically replaced with
an incoming object.

Now, the temporal cost of operations to be executed on the ISB data
structure is analyzed. Recall that the cost of computing the distance between
two objects is denoted as ∆. Assume that the number of nodes stored in ISB
is N .

The cost of performing a range query search corresponds to the cost of
computing the distances between an object and all the pivots plus the cost of
determining true neighbors. Since the number of pivots we used is logarithmic
in the size of the index, the former cost is O(∆ · logN). As for the latter
cost, let γneigh (0 ≤ γneigh ≤ 1) be the mean fraction of index objects marked
as candidate neighbors when the radius is set to R. In order to determine if
a candidate is a true neighbor, its distance from the query object has to be
computed. Then, the cost is O(∆γneighN). Supposing that the latter cost is
always greater than the former one, the total cost for the range query search
is O(∆γneighN).

The cost of removing an object from the index is constant, since it practi-
cally consists in flagging as empty the entry of an array.

Finally, as for the insertion of an object obj into ISB, it requires to compute
the distances between obj and all the pivots. However, since insertion is always
performed after the range query search, these distances are already available
and, then, the insertion cost is constant, too.



25

6.2 Spatial analysis

For STORM1, ISB stores all the W objects of the current window and, for
each of them, the list nn before of the k most recent preceding neighbors, its
identifier, and the counter of its succeeding neighbors. Recall that each object
requires space d and each list requires space k.

For STORM2, ISB stores (ρ + ζ)W objects of the current window, where
ζ denotes the fraction of non-safe inliers and outliers. Furthermore, for each
stored object, the floating point number associated with its preceding neigh-
bors (fract before), its identifier, and the counter of its succeeding neighbors.
Assuming meaningful combinations of the parameters, ISB stores approxi-
mately ρW objects, as confirmed by the analysis of Section 5.3.

Finally, for STORM3, ISB stores exactly νW objects of the current window,
and, for each of them, the floating point number associated with its preced-
ing neighbors (fract before), its identifier, and the counter of its succeeding
neighbors.

Summarizing, the spatial cost of the STORM algorithms is

– O(W (d+ k)) for STORM1,
– O(ρWd) for STORM2, and
– O(νWd) for STORM3.

6.3 Temporal analysis

The procedure Stream Manager consists of different steps (see Figures 1 and
2). The cost of step 1 corresponds to the cost of removing an object from ISB,
which, from the discussion above, is constant. Also step 2 has a constant cost.

Step 3 performs a range query search, whose cost is O(∆γneighN). For each
of the γneighN objects returned by the search, STORM1 performs an ordered
insertion into the list nn before, that costs O(log k) (see Section 4.1), and
executes some other operations having constant cost. Contrariwise, STORM2
and STORM3 perform only constant cost operations.

Step 4 consists in inserting a node into ISB and as previously noted has
constant cost.

Finally, STORM2 and STORM3 include a fifth step, which consists in
possibly removing a node from ISB. For STORM2, the removal cost is the
cost of removing a safe inlier that consists in randomly selecting a safe inlier
and in removing it from ISB, and both these operations have constant cost.
Conversely, for STORM3, the removal cost is the cost of removing a safe inlier
or the object most likely to become a safe inlier. In the former case, the removal
cost is constant as for STORM2, whereas, in the latter case, the cost is linear
to the size of ISB since, an ISB scan is required in order to compute the priority
for the objects which are not safe inliers. Once the scan is accomplished, the
cost for removing the object with highest priority from ISB is constant.

Summarizing, the cost of the procedure Stream Manager is
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– O(∆γneighW log k) for STORM1,
– O(∆γneighρW ) for STORM2, and
– O((∆γneigh + 1)νW ) for STORM3.

The procedure Query Manager consists of a scan of the ISB structure. For
each node n, the STORM1 computes prec neighs in time O(log k) (see Section
4.1) by determining the number of identifiers in n.nn before associated with
non-expired objects. Conversely, STORM2 and STORM3 perform only steps
having constant cost. Summarizing, the cost of the procedure Query Manager
is

– O(W log k) for STORM1,
– O(ρW ) for STORM2,
– O(νW ) for STORM3.

7 Experimental results

In this section, we present the results obtained by experimenting the intro-
duced algorithms on both synthetic and real data sets.

The rest of the section is organized as follows. Section 7.1 describes the
employed data sets, subsequent Section 7.2 analyzes the accuracy of the algo-
rithms in terms of both precision and recall and reports the memory require-
ments. In Section 7.3 the execution time of the algorithms is depicted. Section
7.4 provides a sensitivity analysis to the parameter k. The error distribution
is discussed in Section 7.5. Finally, Section 7.6 studies the behavior of the
algorithm when the concept drifts.

7.1 Datasets employed and experimental settings

Here, the data set employed are described, that are: Mixed Gauss, Rain, TAO,
and DARPA.

The Mixed Gauss data set is a synthetically generated time sequence of
35,000 one dimensional observations, also used in [26]. It consists of a mixture
of three Gaussian distributions with uniform noise.

We also used some public real data from the Pacific Marine Environmen-
tal Laboratory of the U.S. National Oceanic & Atmospheric Administration
(NOAA). Data consist of temporal series collected in the context of the Trop-
ical Atmosphere Ocean project (TAO)2. This project collects real-time data
from moored ocean buoys for improved detection, understanding and predic-
tion of El Niño and La Niña, which are oscillations of the ocean-atmosphere
system in the tropical Pacific having important consequences for weather
around the globe. The measurements used in experiments have been gath-
ered each ten minutes, from January 2006 to September 2006, by a moored
buoy located in the Tropical Pacific.

2 See http://www.pmel.noaa.gov/tao/.
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Fig. 3: Datasets employed.

We considered both a one and a three dimensional data stream. The Rain
data set consists of 42,961 rain measurements. The TAO data set consists
of 37,841 terns (SST, RH, Prec), where SST is the sea surface temperature,
measured in units of degrees centigrade at a depth of 1 meter, RH is the
relative humidity, measured in units of percent at a height of 3 meters above
mean sea level, and Prec is the precipitation, measured in units of millimeters
per hour at a height of 3.5 meters above mean sea level. The three attributes
were normalized with respect to their standard deviation.

Finally, we employed the 1998 DARPA Intrusion Detection Evaluation
Data [14], that has been extensively used to evaluate intrusion detection algo-
rithms. Data consist of network connection records of several intrusions sim-
ulated in a military network environment. The TCP connections have been
elaborated to construct a data set of 23 numerical features. We used 50,000
TCP connection records from about one week of data.

The Mixed Gauss, Rain, and TAO data sets are shown in Figure 3. In
particular, for the first two (one dimensional) data sets, we report the current
time on the x-axis and the object value on the y-axis. Since TAO is a three
dimensional data set, in order to visualize it, we show a 3D plot of the feature
space reporting the objects in the first (x-marked) and in the last (o-marked)
window.

Before leaving the section, we describe the experimental settings employed.
In all experiments, if not explicitly specified, the window size W was set to
10,000 and the parameter k was set to 0.003·W = 30, moreover, the parameter
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Fig. 4: Precision and Recall of STORM2.

R was selected to achieve a few percent of outliers in the current window
(R = 0.05 for Gauss, R = 5 for Rain, R = 2 for TAO, and R = 10,000 for
DARPA).

It was submitted an outlier query every one hundred objects. Measures
reported in the sequel are averaged over the total number of queries. The first
query was submitted only after observing the first W data stream objects.

7.2 Classification accuracy and memory requirements

In this section the classification accuracy of STORM2 and STORM3 is evalu-
ated. It is worth to recall that STORM1 exactly detects distance-based outliers
in the current window. Thus, the answer returned by this algorithm was used
to assess the quality of the approximate solution returned by STORM2 and
STORM3.

The precision and recall measures were employed. The precision represents
the fraction of objects reported by the algorithm as outliers that are true
outliers. The recall represents the fraction of true outliers correctly identified
by the algorithm.
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ρ Gauss Rain TAO DARPA
0.02 0.0357 (+78.5%) 0.0359 (+79.5%) 0.0432 (+116.0%) 0.0384 (+92.0%)
0.05 0.0657 (+31.4%) 0.0659 (+31.8%) 0.0732 (+46.4%) 0.0684 (+36.8%)
0.10 0.1157 (+15.7%) 0.1159 (+15.9%) 0.1232 (+23.2%) 0.1184 (+18.4%)

Table 1: Index Max Size [%]

We start commenting on results of STORM2. Figure 4 shows precision
(dark bars, on the left) and recall (light bars, on the right) achieved by
STORM2, on the four considered data sets for increasing values of ρ, that
are ρ = 0.02, ρ = 0.05, and ρ = 0.10.

Interestingly, on the Gauss data set for ρ = 0.10 the method practically
returned all and only the true outliers, though the method behaves like the
exact one also for smaller values of ρ. This is because in this data set outliers
are represented by noise well separated from the data distribution.

As for the data sets from the TAO Project, since outliers there contained
are associated to large oscillations of earth parameters, they lie on the bound-
ary of the overall measurement distribution and are not completely separated
from the rest of the population. Thus, there exists a region of transition where
the approximate algorithm can fail to exactly recognize outliers (see below
in this section for an evaluation of the characteristics of objects on which
classification errors are made).

It is clear by the diagrams that by augmenting the parameter ρ the preci-
sion tends to decrease while the recall tends to increase. This can be explained
since by using a small sample size the number of nearest neighbors tends to
be overestimated. Anyway, the classification accuracy was very good, e.g. pre-
cision 0.934 and recall 0.887 on the Rain data set, and precision 0.899 and
recall 0.864 on the TAO data set, for ρ = 0.05.

The DARPA data set represents a challenging classification task due the
considerable number of attributes it is composed of. The precision-recall trade-
off previously observed is confirmed also on this data set. Moreover, the clas-
sification accuracy is of remarkable quality: for ρ = 0.05, precision 0.976 and
recall 0.926 were achieved.

Table 1 reports the actual memory occupancy of STORM2 on the pre-
viously mentioned data sets. For each data set, it is reported the occupied
memory, as a fraction of the window, and, between parentheses, the memory
actually required in addition to ρW , as a percentage of ρW .

As already noted in Section 4.2, the memory consumption of STORM2
depends both on the parameter ρ and on the number of non-safe inliers and
outliers falling in the current window. From the table, it is clear that this
number amounts to about the 2% of the window size for all the data sets.
Thus, STORM2 required 0.02 · W additional memory for all the executions.
Clear enough, the lower the value of ρ is, the more this term influences the
actual memory consumption of STORM2.
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Fig. 5: Precision and Recall of STORM3.

Now, we comment on the results of the experiments using STORM3 (see
Figure 5). In these experiments, we set ν to the same values above considered
for ρ, that are ν = 0.02, ν = 0.05, and ν = 0.10, while we set ρ to the value
0.3ν.

In order to understand the behavior of STORM3, it is important to analyze
how the number of non-safe inliers and outliers influences the performances of
STORM3. Consider the values of ν and ρ above defined. First, the number of
safe inliers employed by STORM3 for the estimations is the 30% of the number
of safe inliers employed by STORM2. Second, the number of non-safe inliers
and outliers that can be maintained in memory for answering the queries is
equal to 0.7νW , and, from what above stated, the smaller the value of ρ (and,
then, of ν), the greater the number of non-safe inliers and outliers.

For ν = 0.10 and ν = 0.05, the precision and the recall of STORM3 are
very close to the values achieved by STORM2. Consider now the behavior
of STORM3 for ν = 0.02. From the above discussion, the performances of
STORM3 are expected to degrade. In fact, the precision and the recall of
STORM3 are smaller than those of STORM2. This is very evident for TAO
and for DARPA which are high dimensional data sets, and thus the outliers
in them are much more challenging to be detected. Conversely, for low dimen-
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ρ, ν = 0.02 ρ, ν = 0.05 ρ, ν = 0.10
Data set STORM2 STORM3 STORM2 STORM3 STORM2 STORM3 STORM1

Gauss 0.17 0.12 0.25 0.21 0.47 0.41 4.74
Rain 0.19 0.15 0.35 0.30 0.71 0.59 8.96
TAO 0.20 0.14 0.36 0.26 0.69 0.57 7.34
DARPA 0.26 0.16 0.51 0.35 0.94 0.78 11.01

Table 2: Elaboration time per single object [msec].

sional data sets (Gauss and Rain) the loss of precision and recall appears to
be negligible.

Summarizing, it can be concluded that, unless the parameter ρ is set
to a very small value, STORM3 has performances comparable to those of
STORM2, although it uses a fixed amount of memory, while STORM2 does
not.

7.3 Execution Time

Table 2 reports the time (in milliseconds) employed by the presented algo-
rithms to process an incoming data stream object3. Specifically, it is reported
the time required by STORM2 for various values of ρ and by STORM3 for
various values of ν, together with the time required by STORM1.

Both STORM2 and STORM3 guarantee time savings with respect to
STORM1 which are in most cases proportional to the parameter ρ. Differ-
ences in performances among the various experiments are justified by the
different characteristics of the data sets, and among them, particularly, by
the mean fraction of objects falling in the neighborhood of radius R of data
stream objects. Moreover, it can be noticed that STORM3 is slightly faster
than STORM2, due to the fact that STORM3 works with strictly bounded
memory, and then the number of objects stored in ISB by STORM2 is always
greater than or equal to the number of objects stored by STORM3.

7.4 Sensitivity to parameter k

In this section we analyze the sensitivity of STORM to parameter k. To this
aim we ran the STORM2 algorithm with three different values for this param-
eter, that are k = 10, k = 25, and k = 50. We set the value of the parameter
R to have about 0.5% outliers in each window when k = 10 (the actual values
of R are reported in Figure 6).

Figure 6 reports precision and recall on the previously introduced data
sets. In general, for smaller values of k, the accuracy of the method slightly
worsens. This can be explained by noticing that it becomes more sensitive to
errors on the estimation of number of preceding neighbors (recall that in order

3 Experiments were executed on a Pentium4 3.40 GHz machine having 2GB of main
memory.
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Fig. 6: Precision and Recall of STORM2 for various values of k.

to discriminate between inliers and outliers at query time the method has to
decide if prec neighs ≥ k − succ neighs holds).

Moreover, since the value of the parameter R does not change, by augment-
ing the value of k the number of outliers increases. This has a positive effect
on the precision and recall measures, since the effect of misclassified objects is
mitigated by the greater number of outliers. The following table reports the
average number of outliers in the windows:

Data set k = 10 k = 25 k = 50
Mixed Gauss 60 78 124
Rain 64 129 211
TAO 49 105 160
DARPA 41 54 81

Before concluding, we note that although different values for the parameters k
and R can be used, to obtain a meaningful analysis of the stream their values
have to be set, either by the analyst or by an automatic parameter estimator,
to proper combinations (e.g. as done for some standard distributions in Section
5.3).



33

0 20 40 60 80 100
0

5

10

15

20

25
Rain data set, k=50, R=0.5, ρ=0.01

Number of nearest neighbors

M
is

cl
as

si
fie

d 
ob

je
ct

s 
cu

m
ul

at
ed

 fr
eq

ue
nc

y

Outliers
Inliers

0 20 40 60 80 100
0

5

10

15

20

25
Rain data set, k=50, R=0.5, ρ=0.05

Number of nearest neighbors

M
is

cl
as

si
fie

d 
ob

je
ct

s 
cu

m
ul

at
ed

 fr
eq

ue
nc

y

Outliers
Inliers

0 20 40 60 80 100
0

5

10

15

20

25
Rain data set, k=50, R=0.5, ρ=0.10

Number of nearest neighbors

M
is

cl
as

si
fie

d 
ob

je
ct

s 
cu

m
ul

at
ed

 fr
eq

ue
nc

y

Outliers
Inliers

Fig. 7: Number of nearest neighbors associated with the misclassified objects
of the Rain data set.

7.5 Approximation Error Distribution

Figure 7 shows the distribution of the number of nearest neighbors associated
with objects of the Rain data set which are misclassified by STORM2. These
diagrams are useful to comprehend the nature of the misclassified objects
returned and the quality of the approximation.

From left to right, diagrams are associated with increasing values of ρ.

The abscissa reports the number of nearest neighbors, while the ordinate
reports the cumulated absolute frequency of misclassified objects. Two cumu-
lated histograms are included in each diagram, one concerning outliers and
the other concerning inliers.

Light bars (on the left) represent the mean number of outliers which are
reported as inliers. Thus, these misclassifications concern the recall measure.
Specifically, a bar of position k0 and height h0 represents the following infor-
mation: among the objects having at most k0(< 50) nearest neighbors (and
hence outliers), on the average, h0 of them have been recognized as inliers.

Dark bars (on the right) represent the mean number of inliers which are
reported as outliers. Thus, these misclassifications concern the precision mea-
sure. Specifically, a bar of position k0 and height h0 represents the following
information: among the objects having at least k0(≥ 50) nearest neighbors
(and hence inliers), on the average, h0 of them have been recognized as out-
liers.

These diagrams show that for small sample sizes the number of errors is
biased towards the outliers, due to the overestimation effect. Moreover, more
interestingly, they show the nature of the misclassified objects. Indeed, as
predicted by the analysis of Section 5.1, for an object the probability of being
misclassified greatly decreases with the distance |k0 − k| between the true
number k0 of its nearest neighbors and the parameter k.

Indeed, the majority of the misclassified inliers have a number of neighbors
close to k. For example, when ρ = 0.05, almost all the misclassified outliers
have at most 60 neighbors (compare this value with k = 50).

The quality of the approximate answer is thus very high. Although these
objects are not outliers according to Definition 1, from the point of view of
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Fig. 8: Concept Drift Analysis

a surveillance application, they could be as interesting as true outliers, since
they anyhow lie in a relatively sparse region of the feature space.

It is worth to notice that the analysis above accomplished agrees with
the theoretical analysis concerning the misclassification probability depicted
in Section 5.2.

7.6 Concept drift analysis

In this section we study the behaviour of the method when the concept drifts
over time. With this aim we consider three data sets, that are the Gauss Const
data set, the Gauss Slope data set, and the Gauss Abrupt data set, all com-
posed of 50,000 points coming from a one dimensional gaussian distribution
plus a cloud of outliers.

In the Gauss Const data set, the mean of the data distribution is held
fixed over time to µ0 = 1.1. Conversely, the other two data sets present two
different kinds of concept change. In the Gauss Slope data set, the mean of the
data distribution slowly moves from µ0 to µF = 2.6 (see Figure 8a), while, in
the Gauss Abrupt data set, the mean suddenly moves from µ0 to µF at time
t = 25,000 (see Figure 8b).

We ran the three STORM algorithms on the three data sets executing an
outlier query at each instant of time. In all the experiments, we set k to 50
and R to 0.1. For STORM2 we set ρ to 0.1, while for STORM3 ν was set to
0.1 and ρ to 0.3. In order to visualize the accuracy of the method over time
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we computed the F-score measure, defined as:

F-score =
2 · precison · recall
precision+ recall

,

which is a well-known combined measure of precision and recall.

On the Gauss Const data set, both STORM2 and STORM3 reported pre-
cision 1.0 and recall 1.0, and, hence, F-score 1.0.

Figures 8c and 8d report the F-score associated with STORM2 (the F-
score associated with STORM3 is not reported since it almost all coincides
with the F-score associated with STORM2) on the other two data sets.

As far as the Gauss Slope data set is concerned, the experiment shows that
the method is practically insensitive to slow variations of the concept. Indeed,
on this data set the F-score is almost always equal to 1.0 or close to 1.0 (see
Figure 8c), which is the value obtained by the same algorithm on the Gauss
Fixed data set.

The Gauss Slope data set represents a very difficult data drift scenario,
in that at time instant t = 25,000 the overall data distribution moves to a
different region of the space. Figure 8c shows the F-score of STORM2 for time
t ranging from t = 24,900 to t = 25,200 (the F-score was 1.0 elsewhere). The
figure shows that in correspondence of the concept change, the accuracy of the
method deteriorates. In particular, the F-score worsens during the succeeding
22 time instants. Then, the method begins to learn the new distribution and
the F-score improves till reaching value 1.0 at time instant t = 25,075. This
experiment shows that, as expected, a period of time is needed to the method
in order to adapt to sudden radical concept changes. However, interestingly,
this transitory appears to be reasonably small (compare the length of the
transitory, which is about 75, to the value of the parameter k, which is 50).
Moreover, during this period the method performs reasonably well (the F-score
is always above the value 0.7).

8 Conclusions

In this work the problem of detecting distance-based outliers in streams of
data has been addressed. The novel data stream outlier query task has been
proposed and motivated, and both one exact and two approximate algorithms
to solve it have been presented. Also, bounds on the accuracy of the estimation
accomplished by the approximated method have been stated, and memory re-
quirements for known distributions have been theoretically derived. Finally,
experiments conducted on both synthetic and real data sets have shown that
the proposed methods are efficient in terms processing time, and the approxi-
mate ones are effective in terms of precision and recall of the solution.

Acknowledgments. The authors would like to thank the TAO Project Office
for making available the collected measurements.
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